期刊文献+

基于面删除的四面体网格简化新算法 被引量:3

A Novel Technique Based on Triangle Decimation for Tetrahedral Simplification
下载PDF
导出
摘要 如何简化大规模数据集的几何和拓扑形状以便达到实时显示和绘制的目的,已经越来越引起人们的重视.本文提出一种基于面删除的四面体网格简化新算法.通过对网格中的所有三角形定义其删除的优先级别,删除优先级别高的三角形,以简单的几何删除操作来达到四面体网格简化的目的.和已有的方法比较起来,本方法的特点是每一步都有比较高的删除比例,每一次三角形的删除操作可以达到至少8个(2个面邻接四面体,至少6个边邻接四面体)四面体删除,测试模型中最多可以达到13个四面体的删除.本算法保持了边界节点和网格简化后的一致性. How to simplify a large scale tetrahedral dataset in order to use in the real time rendering is of more importance. A novel technique based on triangle decimation for tetrahedral simplification is described here. A triangle area ratio is defmed as cost function for every triangular in the model. Through this ratio, a list of priority sequences is obtained in the per-compute period . The Mangle which of high priority will be deleted firstly. Compared to the published paper, this method can be used to delete at least 8 tetrahedral in one triangle decimation cycle. In the test model,we can delete at most 13 tetrahedml one time. The results of this technique are of high practical use especially in the real time compression transformation of tetrahedml, finite element computation and rendering.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第12期2343-2346,共4页 Acta Electronica Sinica
关键词 三角形 四面体 网格简化 优先级别 triangle tetrahedral simplification priority
  • 相关文献

参考文献7

  • 1K J Renze, J H Oliver. Generalized unstructured decimation [ J ]. IEEE Computer Graphics and Applications, 1996, 16 (6) : 24- 32.
  • 2O G Staadtl Progressive tetrahedralizatiions [ J ]. ROBERT MOORHEAD IEEE Visualization 98 [ C ]. North California: Computer Society Press, 1998. 397 - 402.
  • 3Prashant Chopra. TetFusion: An algorithm for rapid tetrahedral mesh simplification[A]. HANSPETER PFISTER. IEEE Visualization 02[C]. Boston: Computer Society Press, 2002. 133 - 140.
  • 4Trotts Isaac J. Simplification of tetrahedral meshes [ A ]. ROBERT MOORHEAD. reEF, Visualization 98 [ C ]. North California : Computer Society Press, 1998. 287 - 296.
  • 5TROTrS ISAAC J. Simplification of tetrahedral meshes with error bounds[J]. IEEE Transactions on Visualization and Computer Graphics, 1999,5 (3), 224 - 237.
  • 6CIGNONI P. Simplification of tetrahedral meshes with accurate error evaluation [ A ]. THOMAS ERTL, IEEE Visualization 00 [C]. Salt Lake City: Computer Society Press,2000.85 - 92.
  • 7Garland M. Multi-resolution modeling: Survey & future opportunities[ A]. Eurographics' 99 [ C]. Milan Italy: Eurographics Association, 1999,111 - 131.

同被引文献22

  • 1杜晓晖,尹宝才,孔德慧.基于加权二次误差测度的边折叠简化算法[J].北京工业大学学报,2007,33(7):731-736. 被引量:7
  • 2RENZE K J, ()LIVER J H. Generalized unstructured decimation [ J]. IEEE Computer Graphics and Applications, 1996,16(6) :24 - 32.
  • 3STAADT O G, GROSS M H. Progressive Tetrahedralizations [ C ]// 1998 IEEE of Visualization Conference Proceedings. North Carolina.USA :9 th IEEE Visualization, 1998 : 397 - 403.
  • 4CHOPRA P, MEYER J. Tet Fusion: an algorithm for rapid tetralledral mesh simplification [ C ]//2002 IEEE Visualization Proceedings. Boston, MA, USA: 13 th IEEE Visualization,2002 : 133 - 140.
  • 5KRAUS M, ERTL T. Simplification of nonconvex tetrahedral meshes [C~// FARIN G E, HAMANN B, Hagen H. Hierarchical and geometrical methods in scientific visualization. Tahoe, California, USA: Springer Press, 2003 : 185 - 195.
  • 6CIGNONI P, De FLORIANI L, MAGILLO P, et al. Selective refinement queries for volume visualization of unstructured tetrahedral meshes [ J ]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10 ( 1 ) : 29 - 45.
  • 7DU Zhiyan, CHIANG Yijen. Out- of-core simplification and crack-free LOD volume rendering for irregular grids [ J ]. Computer Graphics Forum,2010,29 ( 3 ) :873 - 882.
  • 8TROTTS 1 J, HAMANN B, JOY K I, et al. Simplification of tetrahedral meshes [ C ]//1998 1EEE of Visualization Conference Proceedings. North Carolina, USA: 9 th IEEE Visualization, 1998: 287 - 295.
  • 9TROTrS I J, HAMANN B, JOY K I. Simplification of tetrahech'al meshes with error bounds [ J ]. IEEE Transactions on Visualization and Computer Graphics, 1999,5 ( 3 ) : 224 - 237.
  • 10CIGNONI P, COSTANZA D, MONTANI C, et ai. Simplification of tetrahedral meshes with accurate error evaluation [ C ]//2000 IEEE of Visualization Conference Proceedings. Salt Lake City, UT, USA: 11 th IEEE Visualization, 2000:85 - 92.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部