期刊文献+

基于结构学习的KNN分类算法 被引量:22

K-Nearest Neighbor Algorithm Based on Learning Structure
下载PDF
导出
摘要 KNN(K-Nearest Neighbor)算法和贝叶斯网络分类算法(Bayesian Network,BN)都是目前应用非常广泛的分类算法。本文首先分析了KNN和BN的分类特点,然后在保留了两个算法在分类问题中优点的基础上,提出了基于贝叶斯网络结构学习的KNN算法(BN-KNN)。实验结果表明,BN-KNN算法能够有效地提高分类的正确率。 K-Nearest Neighbor algorithm(KNN) and Bayesian network classification algorithrn(BN) are currently widely used classification algorithms. At first, this paper analyzes the KNN and BN classified features, and then retains the merits of two classification algorithm. At last, a KNN algorithm based on learning the Bayesian network structure (BN-KNN) is presented. Experimental results show that BN-KNN algorithm can be used to improve the classification accuracy.
出处 《计算机科学》 CSCD 北大核心 2007年第12期184-186,237,共4页 Computer Science
基金 国家自然基金项目(60472017 30670699)资助课题
关键词 贝叶斯网络 K-近邻算法 距离加权 Bayesian network, K-nearest neighbor algorithm, Distance-weighted
  • 相关文献

参考文献9

  • 1Teknomo K. What is K Nearest Neighbors Algorithm? [Z] http://peoplare. volgdu. com/kardi/tutorial/KNN/Contents. htm.
  • 2陈振洲,李磊,姚正安.基于SVM的特征加权KNN算法[J].中山大学学报(自然科学版),2005,44(1):17-20. 被引量:51
  • 3D'Amato C, Malerba D, Esposito F, et al. Extending the K- Nearest Neighbour classification algorithm to symbolic objects [C]. Convegno Scientifico Intermedio SIS, 9-11 Giugno 2003, Universita degli Studi di Napoli "Federico Ⅱ"
  • 4Vincent P, Bengio Y. K-Local Hyperplaneand Convex Distance Nearest Neighbor Algorithms [R]. [Technical Report]. http:// www. iro. umontreal. ca/-lisa/pointeurs/TR1197. pdf, 2001
  • 5Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data [J]. Machine Learning,1992 ( 9 ): 309-347
  • 6Chen R, Herskovits E H. Network analysis of mild cognitive impairment [J]. NeuroImage,2006, 29 : 1252-1259
  • 7Yager R R. An extension of the naive Bayesian classifier [J]. Information Sciences, 2006, 176:577-588
  • 8Yang T Y, Lee J C. Bayesian nearest-neighbor analysis via record value statistics and nonhomogeneous spatial Poisson processes [J]. Computational Statistics. & Data Analysis, 2006
  • 9Frey B J, Jojic N. A Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(9): 1392-1416

二级参考文献9

  • 1COVER T M,HART P E. Nearest neighbor pattern classification [J]. In Trans IEEE Inform Theory, 1967,IT- 13:21 - 27.?A
  • 2CHO T H,CONNERS R W,ARAMAN P A. A comparison of rule-based, K-nearest neighbor, and neural net classifiers for automation [ C ]. Proceedings, Developing and Managing Expert System Programs, 1991, 202 - 209.?A
  • 3DUDANI S A. The distance-weighted k-nearest-neighbor rule [J]. IEEE Trans Syst Man Cyber, 1976, 6:325-327.?A
  • 4VAPNIK V N. The nature of statistical learningtheory[M].NewYork:Springer-Verlag,1995.张学工,译.统计学习理论的本质[M].北京:清华大学出版社,1999.?A
  • 5BURGES J C. A tutorial on support vector machines for pattern recognition [ M ]. Bell Laboratories, Lucent Technologies, Boston, 1997.?A
  • 6KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al. Improvements to Platt's SMO algorithm for SVM classifier design[J]. Neural Computation,2001,13(3):637 - 649.?A
  • 7LIN C J. A formal analysis of stopping criteria of decomposition methods for support vector machines[J]. IEEE Transaction on Neural Networks 2002, 13 (5): 1045 - 1052.?A
  • 8LEE J H, LIN C J. Automatic model selection for support vector machines[ EB/OL]. Available from http:∥www. csie.ntu. edu. tw/~ cjlin/papers. html, 2000.?A
  • 9田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53

共引文献50

同被引文献170

引证文献22

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部