期刊文献+

支持向量机在股票价格预测中的应用 被引量:15

Application of Support Vector Machines in Stock Price Predicting
下载PDF
导出
摘要 综合在中国市场上流行的主要几种技术指标,应用支持向量机分类方法,对个股的价格涨跌进行预测分析.以当前几天的技术指标值为输入向量,若下一天的股价上涨则把该向量归为正类,若下跌则把它归为负类.先利用支持向量机对样本进行训练学习,建立一个分类模式,然后根据当天及前3天指标数据对明天股价进行预测,实证结果表明对个股的预测准确率都大于60%. Technical indicators are very important tools in the analysis of securities investment. In this paper, considering several main technical indicators prevailed in China security market, we predict whether the price of a stock rise or fall with the support vector machines (SVM). We represent the technical indicators of the current four days as input vector. If the price of next day rise, we say the vector belongs to opposite set, if it fall, we say it belongs to negative set. Studying the samples, the SVM support vector machines construct a classification model. Then, based on the data of today and three days before, the SVM gives a prediction of tomorrow price. The experiment shows that the predicting accuracy are all greater than 60%.
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2007年第6期73-76,共4页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(70471002)
关键词 个股价格 涨跌预测 支持向量机 技术指标 分类模式 stock price predicting technical indicator support vector machines classification model
  • 相关文献

参考文献2

  • 1VladimirNVapnik.统计学习理论的本质[M].北京:清华大学出版社,2000.96-107.
  • 2Francis E H Tay, Cao Li-juan. Application of Support Vector Machines in Financial Time Series Forecasting[J]. International Journal of Management Science, 2001,29: 309 - 317.

共引文献34

同被引文献125

引证文献15

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部