期刊文献+

承压含水层地下水稳定流的有限层分析

Analysis of steady under-groundwater flow in the confined aquifer by finite layer method
下载PDF
导出
摘要 有限层法是一种对空间某一方向进行数值离散,而在其余两方向采用连续函数的半数值半解析方法.该方法能有效地将三维问题简化为一维问题求解,从根本上解决了常用数值分析方法在模拟三维地下水运动时存在的计算工作量大、占用内存多、耗时大等缺点.文中基于有限层法的优点,推导了以伽辽金法结合贝塞耳函数为基础的层状非均质各向异性承压含水层的稳定流有限层方程,并编制了相应的计算程序.通过对2个经典算例的数值解与解析解对比分析,验证了该方法的正确性. The finite layer method (FLM) is a quasi-numerical and quasi-analytic method, which is to discretize one dimension of the spatial domain using finite elements, approximating variations in the other two dimensions by continuous function. The method therefore simplifies three-dimensional problems to one-dimensional ones effectively. The FLM can resolve the disadvantages of common numerical methods to simulate three-dimensional groundwater flows radically, such as the large amount of calculation, the need of much internal storage for computer more calculation time and so on, with common numerical methods to simulate three-dimensional under-groundwater flows. Taking advantages of the FLM, finite layer formulas were derived for calculating the under-groundwater drawdown in the heterogeneous and anisotropic confined aquifer based on Galerkin method and Bessel function, and a computer program on FORTRAN language was developed. Two numerical examples were presented and compared with analytical solutions to demonstrate the validity of finite layer method.
出处 《南京工业大学学报(自然科学版)》 CAS 2007年第6期12-16,共5页 Journal of Nanjing Tech University(Natural Science Edition)
基金 国家自然科学基金资助项目(50278042) 江苏省高校自然科学研究计划项目(03KJB560044)
关键词 有限层法 各向异性 承压含水层 稳定流 降深 finite layer method anisotropic confined aquifer steady groundwater flow drawdown
  • 相关文献

参考文献10

  • 1薛禹群,叶淑君,谢春红,张云.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,35(7):7-13. 被引量:66
  • 2朱学愚 谢春红.边界元法在计算地下水稳定水位和流量中的应用.南京大学学报:自然科学版,1987,23(1):64-78.
  • 3Cheung Y K. Finite strip method in structural mechanics [ M ]. New York: Pergamon Press, 1976.
  • 4Small J C, Booker J R. Finite layer analysis of primary and secondary consolidation [ C ]// Proceedings of the 4th International Conference of Numerical Methods in Geomechanics. 1982: 365 - 371.
  • 5Stanley S S, Myron B A, Jay P. The finite layer method for groundwater flow models [ J ]. Water Resources Research, 1992, 28(6) : 1715 -1722.
  • 6Southcott P H, Small J C. Finite layer analysis of vertically loaded piles and pile groups[ J ]. Computers and Geotechnics, 1996, 18(1) :47 -63.
  • 7支喜兰,王秉纲.弹性地基上圆形厚板的有限层法分析[J].西安公路学院学报,1989,7(4):50-57. 被引量:2
  • 8王旭东,魏道垛,宰金珉.群桩-土-承台结构共同作用的数值分析[J].岩土工程学报,1996,18(4):27-33. 被引量:20
  • 9徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1995..
  • 10贝尔雅.地下水力学[M].许涓铭,车用太,梁定伟,等,译.北京:北京地质出版社,1985.

二级参考文献15

  • 1王旭东,魏道垛,宰金珉.单桩荷载——沉降的非线性分析[J].南京建筑工程学院学报,1994(1):15-24. 被引量:23
  • 2[1]Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of computational physics,1997,134:169-189.
  • 3[2]Hou T Y, Wu X H, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].Math. Comput., 1999,68(227):913-943.
  • 4[3]Cruz M E, Petera A. A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media [J]. Int. J. Numer. Methods Eng., 1995,38:1087-1121.
  • 5[4]Dykaar B B, Kitanidis P K. Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach:1.method [J]. Water Resources Research,1992,28(4):1155-1166.
  • 6[5]Durlofsky L J. Representation of grid block permeability in coarse scale models of randomly heterogeneous porous-media [J]. Water Resources Research,1992,28:1791-1800.
  • 7[6]McCarthy J F. Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media [J]. Transport in Porous Media, 1995,19:123-137.
  • 8[7]Babuska I, Szymczak W G. An error analysis for the finite element method applied to convection-diffusion problems [J]. Comput. Methods Appl. Math. Engrg., 1982,31:19-42.
  • 9[8]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J].SIAM J. Numer. Anal., 1983,20:510-536.
  • 10[9]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J. Numer. Anal., 1994,31:945-951.

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部