摘要
讨论了亚纯函数的唯一性问题,推广了仪洪勋及华歆厚的有关定理,证明了下面定理:设f与g是非常数亚纯函数,n是正整数.再设a与b是亚纯函数,且满足T(r,a)+T(r,b)=min{s(r,f),s(r,g)},a(n)b如果f(n)=bg(n)=b,δ(∞,f)=δ(∞,g)=1,且δ(a,f)+δ(a,g)>1,则f≡g或(f(n)-a(n)·(g(n)-a(n)≡(b-a(n)2.
The paper proves the following theorem: Let f and g be two nonconstant meromorphic functions, n be a positive integer. We suppose that a and b are two meromorphic functions and satisfy: T(r,a)+T(r,b)= min {s(r,f),s(r,g)},a (n) b If f (n) =b*g (n) =b,δ(∞,f)=δ(∞,g)=1, and δ(a,f)+δ(a,g)>1, then f≡g or (f (n) -a (n) )·(g (n) -a (n) )≡(b-a (n) ) 2.
出处
《石油大学学报(自然科学版)》
CSCD
1997年第3期102-104,共3页
Journal of the University of Petroleum,China(Edition of Natural Science)
关键词
亚纯函数
零点
亏值
唯一性
Meromorphic function
Zero point
Deficient value
Uniqueness