期刊文献+

一种求解旅行商问题的改进蚁群算法 被引量:3

Solving Traveling Salesman Problem by An Improved Colony Optimization algorithm
下载PDF
导出
摘要 蚁群算法作为一种新型的优化算法,具有很强的适应性和鲁棒性,已广泛的应用于系统控制、人工智能、模式识别等工程领域。由于蚁群算法在搜索过程中易于陷入局部最优解,存在着加速收敛和早熟停滞现象的矛盾。文章针对这些问题,在基本蚁群算法的基础上,从参数的动态调整、信息量的更新规则、局部搜索策略进行相应的改进,引入信息素平滑机制,以求在加快收敛和防止早熟停滞之间取得较好的平衡。旅行商问题的仿真表明:改进后的蚁群算法具有较好的收敛性和稳定性,能够克服算法中早熟和停滞现象的过早出现。 Ant colony algorithm has become a important method in investigation of many fields as novel optimiza- tion algorithms with robust and adaptable merits, especially systematic control、artificial intelligence 、pattern recog- nition. However, Ant Colony algorithm has some disadvantages such as easily relapsing into local best, and existing contradictory between convergence speed and precocity and stagnation. Aimed at this existed problem, A new algo- rithm based on ant colony system is provided in this paper, which is improved by dynamically adjusting parame- ters, information modification and local search strategy, and pheromone trail smoothing is added in the algorithm. The algorithm can obtain good balance between accelerating convergence speed and averting precocity and stagna- tion. Experimental results for TSP problem shows that the improved algorithm have much better convergence and stability, and overcome the precocity and stagnation in advance.
出处 《东华理工学院学报》 2007年第4期387-391,共5页 Journal of East China Institute of Technology
基金 江苏省计算机信息处理技术重点实验室开放课题基金(KJS0601)
关键词 蚁群算法 旅行商问题 信息素 最优解 ant colony algorithm traveling salesman problem pheromone optimal solution
  • 相关文献

参考文献4

  • 1[7]Costa D,Hertz A.1997.Ants can colour graphs[J].Journal of the Operational Research Society,48(3):295-305.
  • 2[8]Dorigo M,Maniezzo V,Colorni A.1996.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on SMC,26(1):8-41.
  • 3[9]Dorigo M,Gambardella L M.1997.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem.IEEE Trans.On Evolutionary Computation,1(1):53-66.
  • 4[10]Thomas Stutzle,Marco Dorigo.1999.ACO Algorithms for the Quadratic Assignment Problem[J].New Ideas in optimization,McGraw-Hill.

同被引文献29

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部