期刊文献+

一种基于极几何和仿射变换的图像匹配方法研究 被引量:6

Image Matching Method Based on Epipolar Geometry and Affine Transformation
下载PDF
导出
摘要 提出一种立体视觉中应用极几何结合仿射变换来解决图像匹配问题的方法。首先利用两幅图像间的极几何关系,确定一些可靠匹配点作为控制点;进而构建全局仿射变换,把像面的特征点投影到另一幅像面上。再利用极几何约束和变换后的图像点位置关系,进一步搜索匹配点。最后是重匹配,分区域对控制点进行优化更新,经过迭代运算,得到最终结果。实验表明,这种算法能较快地收敛,有效地剔除误匹配点和提高匹配精度。 A method for image matching in stereo vision is proposed in this paper, which uses epipolar geometry and affine transformation comprehensively. Firstly, find some reliable matching points with epipolar constraint as initially matching. Then a global affine transformation ean be constructed and the feather points on one image can be transformed to the conjugate one. Constrained by epipolar geometry and transformed points' coordinates, more matching points can be obtained. Lastly, choose and optimize the control points for next matching, substitute the control points adaptively. The final result can be obtained after this itemtion. Experimental results show that this algorithm converges fast and can delete most wrong matching points effectively.
出处 《工具技术》 北大核心 2007年第12期74-77,共4页 Tool Engineering
基金 国家自然科学基金资助项目(项目编号:50475176 50675015) 北京市教委科技发展计划面上项目(项目编号:KM200611232004)
关键词 立体视觉 极几何 仿射变换 图像匹配 Stereo vision, epipolar geometry, affine transformation, image matching
  • 相关文献

参考文献5

  • 1马颂德 张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1997..
  • 2Zhengyou Zhang, R Deriche, O Faugeras. A Robust Technique for matching two uncalibrated images trought the Recovery of the Unknown Epipolar Geometry. Report of Research. France:INRLA, 1994,2273.
  • 3杨敏,沈春林.基于对极几何约束的景象匹配研究[J].南京航空航天大学学报,2004,36(2):235-239. 被引量:22
  • 4向登宁,邓文怡,燕必希,董明利,吕乃光.利用极线约束方法实现图像特征点的匹配[J].北京机械工业学院学报,2002,17(4):21-25. 被引量:14
  • 5Hartley R, Zesserman A. Multiple View Geometry in Computer Vision. Cambridge University Press,2000. 219- 243.

二级参考文献14

  • 1孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985..
  • 2马颂德 张正友.计算机视觉--计算理论与算法基础[M].北京:科学出版社,1997..
  • 3Brown L G. A survey of image registration tech-niques[J]. ACM Computing Surveys, 1992, 24(4):325~376.
  • 4Thevenaz P, Ruttimann U E, Unser M. A pyramid approach to subpixel registration based on intensity[J]. IEEE Trans Image Processing, 1998,7:27~41.
  • 5David M M, Netanyahu N S, Moigne J L. Efficient algorithm for robust feature matching[J]. Pattern Recognition, 1999, 32: 17~38.
  • 6Dai X L, Siamak K. Development of a feature-based approach to automated image registration for multitemporal and multisensor remotely sensed imagery[A]. Proceedings of IEEE International Geoscience and Remoth Sensing Symposium[C]. 1997.243~245.
  • 7Bergen J R, Anandan P, Hanna K, et al. Hierar-chical model based motion estimation[A]. Proc of 2nd European Conf on Computer Vision[C].1992.237~252.
  • 8Heeger D J, Jepson A D. Subspace methods for recovering rigid motion: algorithm and implementation[J]. International Journal of Computer Vision, 1992,7:95~117.
  • 9Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge University Press, 2000.219~243.
  • 10Harris C, Stephens M. A combined corner and edge detector[A]. Proceedings of Alvey Vision Conference[C]. 1988. 189~192.

共引文献46

同被引文献29

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部