期刊文献+

采用熵的多维K-匿名划分方法 被引量:4

Multidimensional K-anonymity Partition Method Using Entropy
下载PDF
导出
摘要 K-匿名是数据发布应用场景下重要的隐私保护模型。近年来数据集K-匿名化的算法得到广泛的研究,Median Mondrian算法是目前唯一的多维K-匿名划分方法。文中研究了Median Mondrian算法,指出其不能有效地平衡数据划分精度与数据隐私安全性之间的矛盾,由此提出基于熵测度机制的多维K-匿名划分方法以及评估K-匿名化结果安全性的测量标准。实验表明该算法是可行的,能有效地提高数据安全性。 K-anonymity is an important privacy preserving model in the data publishing scenario. The algorithms on dataset K-anonymization are researched extensively in recent years, Median Mondrian algorithm is the only multidimensional K-anonymity partition method. However, our research shows that Median Mondrian algorithm is not well-balanced on dealing with the contradiction between data partition precision and data privacy preserving. In this paper, we propose an entropy-based multidimensional K-anonymity partition method and a new evaluation measure on K-anonymization results. The experimental results show that our new method is feasible and preserves the privacy much more efficiently than Median Mondrian algorithm.
作者 晏华 刘贵松
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1228-1231,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60471055)
关键词 K-匿名 多维划分 准标识符 entropy K-anonymity multidimensional partition quasi-identifier
  • 相关文献

参考文献10

  • 1SWEENEY L. K-anonymity: a model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10(5): 557-570.
  • 2SWEENEY L. Achieving K-anonymity privacy protection using generalization and suppression[J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10(5): 571-588.
  • 3FUNG B, WANG K, YU P. Top-down specialization for information and privacy preservation[C]//Proceedings of the 21st ICDE. Los Alamitos, USA: IEEE Computer Society Press, 2005: 205-216.
  • 4LEFEVRE K, DEWlTT D, RAMAKRISHNAN R. Incognito: efficient full-domain K-anonymity[C]//Proceedings of the ACM SIGMOD. New York, USA: ACM Press, 2005: 49-60.
  • 5LEFEVRE K, DEWITT D, RAMAKRISHNAN R. Mondrian multidimensional K-anonymity[C]//Proc of 22nd ICDE. Los Alamitos, USA: IEEE Computer Society Press, 2006: 25-34.
  • 6LEFEVRE K, DEWITT D, RAMAKRISHNAN R. Workloadaware anonymization[C]//Proeeedings of the ACM KDD'06. New York, USA: ACM Press, 2006: 277-286.
  • 7BARBARA D, LI Y, COUTO J. Cooleat: an entropy-based algorithm for categorical elustering[C]//Proeeedings Press of ACM CIKM. New York, USA: ACM Press, 2002: 582-589.
  • 8FRIEDMAN J, BENTLEY J, FINKEL R. An algorithm for finding best matches in logarithmic time[J]. ACM Trans on Mathematical Software, 1977, 3(3): 209-226.
  • 9BLAKE C, MERZ C. UCI repository of machine learning databases[DB/OL]. http://www.ics.uci.edu, 1998-11-07.
  • 10BAYARDO R, AGRAWAL R. Data privacy through optimal K-anonymization[C]//ProeeedingsPress of the 21 st ICDE. Los Alamitos, USA: IEEE Computer Society Press, 2005: 217-228.

同被引文献56

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部