期刊文献+

模壁润滑对铁基粉末制品力学性能的影响 被引量:2

Influences of die wall lubrication on mechanical properties of iron-based superalloy powder compacts
下载PDF
导出
摘要 以成分为Fe-12Cr-2.5W-0.4Ti-0.25(Y2O3)雾化粉末为原料,分别使用聚乙二醇为模壁润滑剂,硬脂酸为粉末润滑剂进行压制。对比了模壁润滑与粉末润滑对模压制品的力学性能影响。研究铁基高温合金粉末模压成形致密化过程中的影响因素和作用机理。研究结果表明:粉末润滑有助于在低压条件下颗粒的重排和致密化,但是其本身占据了压坯的体积从而限制了致密度的进一步提高;采用模壁润滑避免了粉末中混入有机物,使得制备高致密材料成为可能;粉末的退火软化有助于压制成形,并提高合金的致密度;在较高压力下,使用模壁润滑的样品颗粒之间结合更为紧密,孔隙明显减少,这是导致其力学性能提高的主要原因。 The pre-alloyed powder Fe-12Cr-2.5W-0.4Ti-0.25(Y2O3) made by inert-gas atomization was used as raw material, polyethylene glycol and stearic acid were used as the die wall lubricant and admixed powder lubricant, respectively. The influences on mechanical property of die wall lubrication procedure were compared to admixed powder lubrication method. The influencing factors and densification mechanism of iron-based high temperature alloy powder by pressing were investigated. The results show that the lubrication procedure has a great influence on the consolidation and microstructural features. Admixed lubricant aids the densification in the low-pressure region but hinders further densification with the increase of pressure. On the other hand, die wall lubrication offers the possibility of making pore-free material. Powder annealing leads to better ability for plastic deformation and thus aids the densification. It is also found that the particles bind together more tightly by die wall lubrication under higher pressure and the porosity decreases significantly, which leads to better mechanical property.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期1028-1032,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50634060)
关键词 铁基高温合金 模压成形 润滑 致密化 iron-based superalloy die pressing lubrication densification
  • 相关文献

参考文献17

  • 1Akinlade D A, Caley W F, Richards N L, et al. Development of a PM nickel-base superalloy[J]. International Journal of Powder Metallurgy, 2006, 42(4): 43-56.
  • 2Maldini M, Angella G, Lupinc V. Analysis of creep curves of a nickel base superalloy in a wide stress/temperature range[J]. Materials Science and Engineering: A, 2007, 462(1/2): 436-440.
  • 3Sidhu T S, Prakash S, Agrawal R D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni- and Fe-based superalloys[J]. Surface and Coatings Technology, 2006, 201(1/2)- 273-281.
  • 4YAO Xue-xing, Kim H, Choi J. Development of high strength nickel-base cast superalloy with superior creep rupture life[J]. Scripta Materialia, 1996, 35(8): 953-957.
  • 5Davidson J H, Raisson G.Industrial development of a new PM superalloy for critical high temperatures[J].Metal Powder Report, 1992, 47(2): 61.
  • 6James B. Recent developments in ferrous powder metallurgy alloys[J]. Powder Metall, 1994, 30(2): 40-47.
  • 7Tu K N, Gosele U. Hollow nanostructures based on the Kirkendall effect: Design and stability considerations[J]. Applied Physics Letters, 2005, 86(9): 093111-1-3.
  • 8Vakulenko A A, Akukushkin S, Shapurko A V. Kinetics of pore formation upon plastic deformation of crystals[J]. Physics of the Solid State, 2001, 43: 270-273.
  • 9Imayev V M, Imayev R M, Salishev G A. Porosity of TiAI intermetallic compound with micro-and submicrocrystalline structure after superplastic deformation[J]. Materials Science and Engineering: A, 1996, 208(2): 266-231.
  • 10Yin Y, Rioux R, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect[J]. Science, 2004, 304(5671): 711-714.

二级参考文献9

  • 1[1]Cimino T M, Rawlings A J, Rutz H G. Properties of several ANCORDENSETM processed high performance materials. In: Terry C M eds. Advances in Powder Metallurgy & Particulate Materials, NJ: MPIF, 1996, 6(13): 337-352.
  • 2[2]Rutz HG, MurphyT, CiminoTM. Theeffect of microstructure on fatigue properties of high density ferrous P/M materials. In: TerryC M eds. Advances in Powder Metallurgy & Particulate Materials, NJ: MPIF, 1996, 6(13): 375-389.
  • 3[3]Laurent S ST, Chagnon F. Key parameters for warm compaction of high density materials. In: Terry C M eds. Advancesin Powder Metallurgy & Particulate Materials, NJ: MPIF, 1996, 2(5): 125-138.
  • 4[5]Christophe N D, Athony G, German R M. Effect of lubrication mode and compaction temperature on the properties of Fe-Ni-Cu-Mo-C.The International Journal of Powder Metallurgy, 1998, 34(2): 29~33.
  • 5[7]Rutz H G, HanejkoF G, Luk S H. Warm compaction offers high density at low cost. Metal Powder Report, 1994, 49(9): 40~47.
  • 6[8]Rutz HG, HanejkoFG. High density processing of high pefformance ferrous materials. In: Teny C M eds. Advancesin Powder Metallurgy & Particulate Materials, NJ: MPIF, 1994, 5:117~124.
  • 7[9]Cao Shunhua, Huang Bairn, Qu Xuanhui, et al. Densification mechanisms of warm compaction and powder mixture designing rules.Joumal of Central South University of Technology, 2000, 7(1): 9~11.
  • 8李元元,项品峰,夏伟,张卫文.温压工艺——制备高密度粉末冶金零件的新技术[J].材料导报,2000,14(2):25-27. 被引量:8
  • 9林涛,果世驹,李明怡,魏延平.粘结剂和润滑剂对铁粉流动性和松装密度的影响[J].粉末冶金技术,2000,18(1):8-11. 被引量:15

共引文献8

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部