摘要
设算子代数A B(H),μ(A)表示A中的部分等距算子全体,若p是A到B(H)的线性映射,且对任意的UEu(A),有叫U)(kecU)Gr“hCr,则称 是A上的μ-核值保持映射。本文将证明:Nest代数的Jacobson根上的范数拓扑连续的μ-核值保持映射是广义内导子。
Let A be an operator algebra in B(H) , and letμ(A) denote the set of all partial isometric operators in A. We say that a linear map . : A→ B(H) is a map of μ-preserving kernel into range if .(U)(kerU) C ran (U) for any . Cμ(A). In this paper, we show that a norm continuous linear map of μ-preserving kernel into range on Jacobson radical of nest algebras is a generalized inner derivatio., i.e , ip(T) =TA+BT for Some A,B G B(H).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1997年第3期377-384,共8页
Acta Mathematica Sinica:Chinese Series
基金
湖北省高校重点科研基金
关键词
NEST代数
JACOBSON根
u-核值保持映射
线性算子
Nest algebra, Jacobson radical , Generalized inner derivation , Jordan derivation , μ-preserving kernel into range map