期刊文献+

基于Elman网络的近红外光谱技术多组分定量分析研究 被引量:1

Study on the Multicomponent Quantitative Analysis Using Near Infrared Spectroscopy Based on Building Elman Model
下载PDF
导出
摘要 研究了Elman神经网络(反馈神经网络,Recurrent Network)在近红外光谱定量分析中的应用。以饲料样品为实验材料,采用Elman网络建立了饲料中苯丙氨酸(Phe)、赖氨酸(Lys)、酪氨酸(Tyr)和胱氨酸(Cys)四种氨基酸含量的近红外光谱定量分析模型。用偏最小二乘法(partial least squares,PLS)将原始数据压缩为主成分,取前3个主成分的12个吸收峰值输入Elman网络,网络中间层神经元个数为47。Elman网络模型对样品4个氨基酸含量的预测决定系数(r2)分别为0.960,0.981,0.979,0.952。表明所建Elman网络预测模型通过近红外光谱能够较准确预测饲料中苯丙氨酸、赖氨酸、酪氨酸和胱氨酸四种氨基酸的含量,为通过近红外光谱技术进行多组分定量分析提供了新思路。 The present paper introduces an application of near infrared spectroscopy(NIRS) multi-component quantitative analysis by building a kind of recurrent network(Elman)model. Elman prediction model for phenylalanine(Phe), lysine(Lys), tyrosine(Tyr) and cystine(Cys) in 45 feedstuff samples was established with good veracity, Twelve peak value data from 3 principal components straight forward compressed from the original data by PLS were taken as inputs of Elman, while 4 predictive targets as outputs. Forty seven nerve cells were taken as hidden nodes with the lowest error compared with taking 43 and 45 nerve cells. Its training iteration times was supposed to be 1 000. Predictive correlation coefficients by the model are 0. 960, 0. 981, 0.979 and 0. 952. The results show that Elman using in NIRS is a rapid, effective means for measuring Phe, Lys, Tyr and Cys in feedstuff powder, and can also be used in quantitative analysis of other samples.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第12期2456-2459,共4页 Spectroscopy and Spectral Analysis
基金 教育部南昌大学食品科学重点实验室开放基金项目(NCU200404) 江西省星火计划项目(2005年)资助
关键词 近红外光谱 ELMAN网络 偏最小二乘法 多组分定量分析 Near infrared spectroscopy (NIRS) Elrnan PLS Multi-component quantitative analysis
  • 相关文献

参考文献18

二级参考文献73

共引文献250

同被引文献12

  • 1丁世飞,靳奉祥,史忠植.基于PLS的信息特征压缩算法[J].计算机辅助设计与图形学学报,2005,17(2):368-371. 被引量:7
  • 2骆中华,刘瑞兰,苏宏业,屈利娟.基于PLS快速剪枝法的RBF神经网络软测量模型建模方法和应用[J].化工自动化及仪表,2005,32(3):19-21. 被引量:5
  • 3Mccllochw S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943,10(5):115 - 133.
  • 4Elman J L. Finding structure in lime[ J]. Cogni-tive Science, 1990,14(2) : 179 - 211.
  • 5Melchiorre C, Matteucci M, Azzoni A, et al. Artificial neural networks and cluster analysis in landslide susceptibility zonation [J].Geomorphology, 2008,94(3) : 379 - 400.
  • 6Lewis E, Sheridan C, Farrell M O, et al. Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals[J]. Sensors and Actuators A: Physical, 2007,136( 1 ) : 28 - 38.
  • 7Kevin R J, Simon X Y, Roger R H. Pork farm odour modelling using multiple-component multiple-factor analysis and neural networks[J].Applied Soft Computing, 2005,6(1) :53 - 61.
  • 8Gopi E S. Digital image forgery detection using artificial neural network and independent component analysis [J].Applied Mathematics and Computation, 2007,194(2 ) : 540 - 543.
  • 9Li Rui-hua,Meng Guo-xiang, Gao Nai-kui, et al. Combined use of partial least-squares regression and neural network for residual life estimation of large generator stator insulation[J]. Measurement Science and Technology, 2007,18(7):2074- 2082.
  • 10Ding Shi-fei, Jia Wei-kuan, Su Chun-yang, et al. PCA-based elman neural network algodtm[A]. Kang Lishan, Cai Zhihua, Liu Yong (eds.) Advances in Computation and Intelligence, ISICA2008, LNCS, Springer, Heidelberg [ C ]. Heidelberg: Springer,2008.5370.315- 321.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部