期刊文献+

基于模糊支持向量核回归方法的短期峰值负荷预测 被引量:11

Short-term peak load forecasting based on fuzzy support vector kernel regression method
下载PDF
导出
摘要 分析了电力系统负荷预测目前采用的方法的不足;在已有研究成果的基础上,根据电网负荷的特点进一步完善了基于模糊支持向量的核回归方法;与目前已有的方法,如神经网络、卡尔曼滤波、最小绝对值参数估计、结合遗传算法的支持向量机、结合模糊小波技术的支持向量机等进行对比实验,实验结果展示了几种方法的性能对比,为该领域的研究提供了参考. In view of the disadvantages of current methods for load forecasting in power system, a new algorithm named fuzzy support vector kernel regression method (F-SVKR) is proposed to deal with the problem. Comparison with some conventional methods, such as the artificial neural network, Kalman filtering algorithm, the method of minimizing absolute parameter estimation, the support vector machine and so on, have been performed. Expertmental results show their performance differences and provide some reference information for the further research in this domain.
作者 蒋刚
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第6期986-990,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(10576027).
关键词 电力系统 负荷预测 模糊逻辑 支持向量机 核函数 power system load forcasting fuzzy logic support vector machine kernel function
  • 相关文献

参考文献17

  • 1LIU K. Comparison of very short-term load forecasting technique[J]. IEEE Trans on Power Systems, 1996, 11(2): 877 - 882.
  • 2胡政,柳进,胡林献.电网高峰负荷分析决策平台的设计与实现[J].电网技术,2005,29(6):58-62. 被引量:6
  • 3李端超,谢恒,江山立,陈家庚.安徽电网实时发电控制系统设计及实现[J].电网技术,2001,25(1):62-66. 被引量:5
  • 4FRANKLIN P W. A theoretical study of the three phase salient pole type generator with simultaneous AC and bridge rectified DC output, part Ⅰ and part Ⅱ[J]. IEEE Trans on Power Apparatus and Systems, 1973, 92(2): 543 - 557.
  • 5SCHIFERL R E Six phase synchronous machine with AC and DC stator connections, part Ⅰ and part Ⅱ[J]. IEEE Trans on Power Apparatus and Systems, 1983, 102(8): 2685 - 2701.
  • 6MA Weiming, ZHANG Gaifan, LIU Dezhi, et al. A synchronous machine with simultaneous AD/DC output: the Patent of China, ZL 94107628.8[P]. 1999, 09, 11. Wuhan, Hubei: Navy Engineering Institute of PLA, 1999..
  • 7尤勇,盛万兴,王孙安.基于人工免疫网络的短期负荷预测模型[J].中国电机工程学报,2003,23(3):26-29. 被引量:30
  • 8谢宏,程浩忠,张国立,牛东晓,杨镜非.基于粗糙集理论建立短期电力负荷神经网络预测模型[J].中国电机工程学报,2003,23(11):1-4. 被引量:66
  • 9AL-HAMADI H M, SOLIMAN S A. Short-term electric load forecasting based on kalman filtering algorithm with moving window weather and load model[J]. Electric Power Systems Research, 2004, 68(1): 47 - 59.
  • 10SOLIMAN S A, PERSAUD S, EI-NAGAR K, et al. Application of least absolute value parameter estimation based on linear programming to short-term load forecasting[J]. Electrical Power and Energy Systems, 1997, 19(3): 209- 216.

二级参考文献31

  • 1高中文,周苏荃,刘有斌,柳焯,曾明.电力系统运行模式的建立问题[J].华中电力,1994,7(2):9-15. 被引量:3
  • 2柳进,唐降龙.基于主成分分析L-M神经网络高峰负荷预测研究[J].继电器,2004,32(13):24-27. 被引量:9
  • 3吴敏毓 刘恭植 (Wu Minyu Liu Gongzhi).医学免疫学 (Medical immunology)[M].合肥:中国科学技术大学出版社 (Hefei:University of Science &amp, Technology of ChinaPress),1995..
  • 4Tamimi M, Egbert R. Short term electric load forecasting via fuzzy neural collaboration [J].Electric Power Systems Research, 2000, (56)243-248.
  • 5Mastorocostas P A, Theocharis J B, Bakirtizis A G, Fuzzy modeling for short term load forecasting using the orthogonal least squares method [J].IEEE Transaction on Power Systems, 1999, 14(1): 29-36.
  • 6InmonWH.Building the data warehouse[M].北京:机械工业出版社,2000..
  • 7J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2:121-167.
  • 8V Vapnik.Statistical Learning Theory[M].Wiley-Interscience,Publication,1998.
  • 9C W Hsu,C J Lin.A comparison of methods for multiclass support vector machines[J].IEEE Trans on Neural Networks.2002,13(2):415-425.
  • 10Li Kun-lun,Huang Hou-kuan,Tian Sheng-feng.A novel multi-class SVM classifier based on DDAG[A].Proc.of IEEE ICMLC'02[C].China:IEEE,2002.1203-1207.

共引文献173

同被引文献105

引证文献11

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部