期刊文献+

变量极小不可满足在模型检测中的应用(英文) 被引量:4

Applying Variable Minimal Unsatisfiability in Model Checking
下载PDF
导出
摘要 提出一个结合变量抽象和有界模型检测(BMC)的验证框架,用于证明反例不存在或输出存在反例.引入变量极小不可满足(VMU)的数学概念来驱动抽象精化的验证过程.一个VMU公式F的变量集合是保证其不可满足性的一个极小集合.严格证明了VMU驱动的精化满足抽象精化框架中的两个理想性质:有效性和极小性.虽然VMU的判定问题和极小不可满足(MU)一样难,即DP完全的,该案例研究表明,在变量抽象精化过程中,VMU比MU更为有效. This paper presents a framework combining variable abstraction with bounded model checking, in order to prove the counterexamples' absence or establish the counterexamples' existence. A mathematical definition of variable minimal unsatisfiability (VMU) is introduced to drive this abstraction refinement process. The set of variables of VMU formula is a minimal one guaranteeing its unsatisfiability. Furthermore, the authors prove that VMU-driven refinement is valid and minimal by mathematical reasoning. Although the determining problem of VMU is as hard as the well-known problem called minimal unsatisfiability (MU), i.e. De-complete, the case study has shown that VMU could be more effective than MU in variable abstraction refinement process.
出处 《软件学报》 EI CSCD 北大核心 2008年第1期39-47,共9页 Journal of Software
基金 Supported by the National Natural Science Foundation of Chinaunder GrantNos.60425206,60773104,60403016,60633010(国家自然科学基金) in Partby the Jiangsu Planned Projects for Postdoctoral Research Funds of Chinaunder GrantNo.0701003B(江苏省博士后科研资助计划)
关键词 极小不可满足 抽象精化 模型检测 minimal unsatisfiability abstraction refinement model checking
  • 相关文献

参考文献2

二级参考文献26

  • 1Emerson E.A.. Branching time temporal logic and the design of correct concurrent programs[Ph.D. dissertation]. Harvard University, Cambridge, MA, 1981
  • 2Sistla A.P., Clarke E.M.. Complexity of propositional temporal logics. Journal of the ACM, 1986, 32(3): 733~749
  • 3Lichtenstein O., Pnueli A.. Checking that finite state concurrent programs satisfy their linear specification. In: Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, New York, 1985, 97~107
  • 4Godefroid P., Pirottin D.. Refining dependencies improves partial-order verification methods (extended abstract). In: Courcoubetis C. ed.. CAV, Lecture Notes in Computer Science 697. Springer, 1993, 438~449
  • 5Peled D.. Combining partial order reductions with on-the-fly model-checking. Formal Methods in System Design, 1996, 8(1): 39~64
  • 6Valmari A.. A stubborn attack on state explosion. Formal Methods in System Design, 1992, 1(4): 297~322
  • 7Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang L.J.. Symbolic model checking: 1020 states and beyond. In: Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science, Washington, D.C., 1990, 1~33
  • 8Bryant R.E.. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys, 1992, 24(3): 293~318
  • 9Clarke E.M., Grumberg O., Hamaguchi K.. Another look at ltl model checking. In: Proceedings of the 6th Conference on Computer Aided Verification,Stanford, California, USA, 1994, 415~427
  • 10Kesten Y., Pnueli A., Raviv L.. Algorithmic verification of linear temporal logic specifications. In: Larsen K.G., Skyum S., Winskel G. eds.. ICALP, Lecture Notes in Computer Science 1443. Springer, 1998, 1~16

共引文献180

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部