期刊文献+

块体纳米晶材料的大塑性变形制备技术 被引量:9

SPD Technology for Fabricating Bulk Nanocrystalline Materials
下载PDF
导出
摘要 综述了块体纳米材料大塑性变形(SPD)制备技术的工作原理及分类。SPD技术按材料的细化机制一般可分为大塑性扭转挤压法(SPTS)、等径角挤压法(ECAP)和多重锻压法(Multi-forging)。重点讨论了SPTS和ECAP工艺的切变机制及其工艺参数,同时分析了这两种工艺的优缺点,并在此基础上提出了一些解决方案。 The processing principle and classification of severe plastic deformation (SPD) for fabricating bulk nanocrystalline materials are summarized in the present paper. SPD technologies are commonly classified into severe plastic torsion straining (SPTS), equal channel angular pressing or extrusion (ECAP or ECAE) and multi-forging according to the ultra-fining mechanism of processed materials. The shearing mechanism and technique parameters of SPTS and ECAP as well as their advantages and disadvantages are discussed. At the same time, some solutions are brought forward on the basis of above discussions.
作者 郑志军 高岩
出处 《材料导报》 EI CAS CSCD 北大核心 2008年第1期90-93,101,共5页 Materials Reports
关键词 块体纳米品材料 大塑性扭转挤压 等径角挤压 bulk nanocrystalline materials, severe plastic torsion straining, equal channel angular pressing
  • 相关文献

参考文献38

  • 1Gleiter H. Mater Sci, 1989, 33:223
  • 2Lu Wei, et al. J Alloys Comp, 2006, 413:85
  • 3Eric Gaffet,et al. Ann Chim Sci Mat, 2002, 27(6) :47
  • 4Erb U. Nanostruct Mater, 1995, 6:533
  • 5Lu K. Mater Sci Eng Reports, 1996, 16:161
  • 6Vidal V,et al. Acta Mater, 2006, 54:1063
  • 7Valiev R Z, et al. Prog Mater Sci, 2000, 45:103
  • 8Guo W H, et al. Acta Mater, 2000, 48:2117
  • 9Balakrishna Cherukuri,et al. Mater Sci Eng A, 2005, 410- 411:394
  • 10Valiev R Z, et al. Acta Mater, 1996, 44(12): 4705

二级参考文献45

  • 1Segal V M.Severe Plastic Deformation:Simple Shear Versus Pure Shear.Materials Science and Engineering,2002,A338:331~334.
  • 2Valiev R Z,Islamgaliev R K,Alexandrov I V.Bulk Nanostrucrured Materials from Severe Plastic Deformation.Progress in Materials Science,2000,45:103~189.
  • 3Yamashita A,Yamaguchi D,Horita Z,et al.Influence of Pressing Temperature on Microstructural Development in Equal-channel Angular Pressing.Mater.Sci.Eng.,2000,A287:100~106.
  • 4Gholinia A,Prangnell P B,Markushev M V.The Effect of Strain on the Development of Deformation Structures in Severely Deformed Aluminum Alloys Processed by ECAE.Acta Mater.,2000,48:1 115~1 130.
  • 5Yamashita A,Horita Z,Terence G.Improving the Mechanical Properties of Magnesium and a Magnesium Alloy through Severe Plastic Deformation.Materials Science and Engineering,2001,A300:142~147.
  • 6Berbon P B,Furukaw A M,Horita Z,et al.Influence of Pressing speed on Microstructural Development in Equal-channel Angular pressing.Metal.Mater.Trans.,1999,A30(8):1 989~1 997.
  • 7Dong H S,Inyoung K.Shear Strain Accommodation During Severe Plastic Deformation of Titanium Using Equal Channel Angular Pressing.Materials Science and Engineering,2003,A347:239~242.
  • 8Chang J Y,Aidang S.Microstructure and Mechanical Properties of AlMgSi Alloys After Equal Channel Angular Pressing at Room Temperature.Materials Science and Engineering,2003,A347:165~170.
  • 9Minoru F,Yoshinori I,Zenji H,et al.Terence G.Langdon.The Shearing Characteristics Associated with Equal-channel Angular Pressing.Materials Science and Engineering,1998,A257:328~332.
  • 10Valiev R Z, Krasilnikov N A,Tsenev N K.Plastic Deformation of Alloys with Submicron-grained Structure. Materials Science & Engineering A, 1991,137(15) :30.

共引文献48

同被引文献110

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部