期刊文献+

基于BISQ模型的各向同性孔隙介质弹性波三维交错网格高阶有限差分数值模拟 被引量:7

3D staggered-grid high-order finite difference numerical simulation of elastic wave equation in porous isotropic media based on BISQ model
下载PDF
导出
摘要 从BISQ模型弹性波的本构方程和运动方程出发,推导出了基于BISQ模型的各向同性孔隙介质弹性波三维高阶交错网格有限差分算法,进行了数值模拟,在低频下能看到明显的快纵波、快横波和微弱慢纵波,在高频情况下可以看到明显的快纵波、快横波、慢纵波和慢横波。在三维情况下对比了xoz、xoy、yoz平面内的波场切片,并对平行xoz平面,不同y值处的波场切片进行了对比,结果证明三维数值模拟可以从不同角度更好地反映波场的传播特性。 From the constitutive equations and kinematic equations based on BISQ model, the authors get the staggered-grid high-order FD scheme on propagation of elastic wave in three-dimensional isot:ropic media, and carry through the numerical simulation. The result of 3D numerical simulation shows there existing fast P wave, fast S wave, slow P wave, slow S wave in high frequency, and fast P wave, fast S wave, faint slow P wave in low frequency. Compared the wave field snap in different pane, the result indicates that 3D numerial simulation can show the characteristic of wave propagation in a different way.
出处 《世界地质》 CAS CSCD 2007年第4期501-508,共8页 World Geology
基金 国家"863"计划资助项目(2005AA615040) 国家海洋局青年基金资助项目(2007311)
关键词 孔隙介质 交错网格 高阶有限差分 数值模拟 porous medium staggered grid method high-order finite difference numerical simulation
  • 相关文献

参考文献26

  • 1Blot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I low-frequency range; II higher frequency range [J]. J Acoust Soc Amer, 1956, 28: 168-191.
  • 2Biot M A. Mecllanics of deformation and acoustic propagation in porous media [J ]. J Appl Phys, 1962, 33 (4) : 1482-1498.
  • 3Blot M A. Generalized theory of acoustic propagation in porous dissipative media [J ]. J Acoust Soc Amer , 1962, 34 (9): 1254-1264.
  • 4Plona T J. Observation of a second bulk compressional wave in a porous media at ultrasonic frequencies [ J ]. Appl PhysLett, 1980, 34; 259-261.
  • 5Mavko G, Nur A. Wave attenuation in partially saturated rocks [J]. Geophysics, 1979, 44 (2): 161-178.
  • 6Dvorkin J, Nur A. Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms [ J ]. Geophysics, 1993, 58 (4): 524-533.
  • 7Parra J O. The transversely isotropic poroelastic wave equation including the Blot and the squirt mechanisms: theory and application [J]. Geophysics, 1997, 42 (1): 309-318.
  • 8Para J O. Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy [J]. Geophysics, 2000, 65: 201-210.
  • 9Yang K H, Zhang Z , Effects of the Biot and the squirt-flow coupling anisotropy [J]. Wave Motion, 2002, 6: 733-735.
  • 10杨顶辉,陈小宏.含流体多孔介质的BISQ模型[J].石油地球物理勘探,2001,36(2):146-159. 被引量:35

二级参考文献87

  • 1邵秀民,蓝志凌.各向异性弹性介质中波动方程的吸收边界条件[J].地球物理学报,1995,38(A01):56-73. 被引量:17
  • 2裴正林.层状各向异性介质中横波分裂和再分裂数值模拟[J].石油地球物理勘探,2006,41(1):17-25. 被引量:20
  • 3杨顶辉.孔隙各向异性介质中基于BISQ模型的弹性波传播理论及有限元方法(博士后研究报告)[M].北京:石油大学,1998..
  • 4杨顶辉 陈小宏 等.双相介质中基于固/流耦合各向异性的应力波方程[J].中国学术期刊文摘(科技快报),2000,6:75-77.
  • 5杨顶辉.基于固-流耦合作用各向异性的弹性波方程[J].中国学术期刊文摘(科技快报),2000,6:733-735.
  • 6杨顶辉,滕吉文.各向异性介质中三分量地震记录的FCT有限差分模拟[J].石油地球物理勘探,1997,32(2):181-190. 被引量:37
  • 7[7]Randall C J. Absorbing boundary condition for the elastic wave equation. Geophysics, 1988,53:611 ~ 624
  • 8[8]Reynolds. Boundary conditions for the numerical solution of wave propagation problems. Geophysics, 1978,43:1099
  • 9[10]Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seism. Soc. Am.,1996,88:881 ~ 897
  • 10[2]Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics,1985, 50: 705 ~ 708

共引文献404

同被引文献76

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部