期刊文献+

城市天然气中长期消费预测 被引量:4

City Natural Gas Consumption Medium-Long Term Prediction
下载PDF
导出
摘要 通过对城市天然气中长期历史消费情况的分析研究,建立了模拟城市天然气消费的趋势外推预测模型——龚珀兹负指数函数模型,并采用最小二乘法和人工神经网络对该模型进行求解。实例计算结果表明:趋势外推模型能够模拟城市天然气中长期消费的变化趋势,在根据最小二乘法、BP算法、微粒群算法(PSO算法)训练神经网络求解得到的3个预测模型中,采用PSO算法得到的模型精度高、耗时少,能较准确地反映城市天然气中长期消费情况。 According to historical data of the city natural gas medium-long term consumption, a trend exploration prediction model based on simulating city natural gas consumption, named Gompertz negative exponential function model, has been established. Then, least square method and artificial neural network are used to solve this model. The calculated results of a practical example show that the established trend extrapolation model can simulate the medium-long term natural gas consumption changes. Among the three model which gained by using least square method, BP algorithm method, PSO algorithm method, PSO algorithm method can more accurately reflect the medium-long term city natural gas consumption trend with high accuracy, less time-consuming.
出处 《天然气技术》 2007年第6期77-79,共3页 NATURAL GAS TECHNOLOGY
基金 四川省高校重点学科建设资助项目(SZD0416)
关键词 天然气消费 预测 数学模型 算法 Natural gas consumption Prediction Mathematical model Algorithm
  • 相关文献

参考文献5

二级参考文献26

  • 1张永怀,刘君华.采用BP神经网络及其改进算法改善传感器特性[J].传感技术学报,2002,15(3):185-188. 被引量:54
  • 2邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1992.101-111.
  • 3周江芗.实用回归分析方法[M].上海:上海科学技术出版社,1990..
  • 4中华人民共和国国家统计局.中国统计年鉴-2001[M].北京:中国统计出版社,2001.647-680.
  • 5Peter J Angeline, Gregory M Saunders, Jordan B Pollack. An evolutionary algorithm that constructs recurrent neural networks[J]. IEEE Transactions on Neural Networks, 1994,5(1):54-64.
  • 6Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks[J].IEEE Transactions on Neural Networks, 1994,15(1):39-53.
  • 7Xin Yao, A review of evolutionary artificial neural network[J].International Journal of Intelligent System, 1993,8:529-567.
  • 8Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C].Piscataway,NJ.USA:IEEE Service Center,1995.39-43.
  • 9W Z Lu, H Y Fan, A Y T Leung, etc. Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization[J]. Environmental Monitoring and Assessment, 2002,79:217-230.
  • 10张航.精通MATLAB 6[M].北京:清华大学出版社,2002..

共引文献89

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部