期刊文献+

基于小波包分解的脑电信号特征提取 被引量:24

EEG feature extraction in brain computer interface based on wavelet packet decomposition
下载PDF
导出
摘要 在脑机接口研究中,针对脑电信号的特征抽取,提出一种基于小波包分解的方法,利用Fisher距离准则,选择具有较大可分离性的特定子带小波包系数和能量作为有效特征,构成特征矢量,并采用BCI2003竞赛数据,通过对该特征矢量的可分性和识别精度2个指标的评估,表明了所提出方法的有效性。 In the study of brain computer interface, a method based on wavelet packet decomposition is proposed which is used for the feature extraction of electroencephalogram. The power of special sub-bands and coefficients of wavelet packet decomposition that have larger separability are selected to construct eigenvector according to Fisher distance criterion. The eigenvector is obtained by combining the effective features of electroencephalograph signals from different channels. The performance of the eigenvector is evaluated by separability and recognition accuracy using the data set from BCI 2003 competition. Classification results have proved the effectiveness of this method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第12期2230-2234,共5页 Chinese Journal of Scientific Instrument
关键词 脑机接口 小波包分解 特征提取 子带能量 brain computer interface (BCI) wavelet packet decomposition (WPD) feature extraction power of sub-band
  • 相关文献

参考文献12

  • 1GUGER C,NEUPER C,WALTERSPACHER D,et al.Rapid prototyping of an EEG-based brain computer interface (BCI)[J].IEEE Trans.Neural Syst.Rehab.Eng.,2001,9(1):49-58.
  • 2LAL T N,SCHR DER M,HINTERBERGER T,et al.Support vector channel selection in BCI[J].IEEE Trans.Neural Syst.Rehab.Eng.,2004,5(6):1003-1010.
  • 3PFURTSCHELLER G,NEUPER C,SCHLOGL A,et al.Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters[J].IEEE Trans.Rehab.Eng.,1998,6 (3):316-325.
  • 4MILL N J.Adaptive brain interfaces[J].Commun.ACM.,2003,46:74-80.
  • 5MILL N J,MOURI O J.Asynchronous BCI and local neural classifiers:An overview of the adaptive brain interface project[J].IEEE Trans.Neural Syst.Rehab.Eng.,2003,11:159-161.
  • 6SCHROEDER M,BOGDAN M,ROSENSTIEL W,et al.Automated EEG feature selection for brain computer interfaces[C].In Proc.1st int.IEEE EMBS Conf.Neural Eng.,2003:626-629.
  • 7GARRETT D,PETERSON D A,ANDERSON C W,et al.Comparison of linear,nonlinear,and feature election methods for EEG signal classification[J].IEEE Trans.Neural Syst.Rehab.Eng.,2003,11 (2):141-144.
  • 8SRINIVAS M,PATNAIK L M.Adaptive Probabilities of crossover and mutation in genetic algorithms[J].IEEE Transactions on Systems,Man,and Cybernetics,1994,24(4):656-667.
  • 9WANG H Y.Nonstationary random signal analysis and processing[J].Beijing:National Defence Industry Press,1999.
  • 10MAO K Z,TAN K C,SER W.Probabilistic neural-network structure determination for pattern classification[J].IEEE Tran.Neural Networks,2000,11 (4):1010-1017.

同被引文献297

引证文献24

二级引证文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部