期刊文献+

全局频繁闭项目集挖掘算法研究

Research on Algorithm for Mining Global Closed Itemsets
下载PDF
导出
摘要 频繁闭项目集挖掘是数据挖掘研究中的一个重要研究课题。目前已有的频繁闭项目集挖掘算法主要针对单机环境,有关分布式环境下的全局频繁闭项目集挖掘算法的研究尚不多见。为此,本文提出了一种快速挖掘全局频繁闭项目集算法,并对其更新问题进行了研究;提出了一种相应的频繁闭项目集增量式更新算法,该算法将充分利用先前的挖掘结果来节省发现新的全局频繁闭项目集的时间开销。实验结果表明算法是有效的。 Discovering frequent closed itemsets is a key problem in data mining application. Many sequential algorithms have been proposed for mining frequent closed itemsets. However, very little work has been done in discovering fre quent closed itemsets in distributed environment. In this paper, an efficient algorithm GFCIA and its updating algo rithm UGFCIA for mining global frequent closed itemsets is presented, which uses far less communication overhead. Experimental results show the feasibility and effectiveness of the algorithm.
出处 《计算机科学》 CSCD 北大核心 2008年第1期193-195,共3页 Computer Science
基金 国家自然科学基金(No.60572112)
关键词 数据挖掘 分布式数据库 频繁闭项目集 全局频繁闭项目集 Data mining, Distributed database, Frequent closed itemsets, Global frequent closed itemsets
  • 相关文献

参考文献15

  • 1Agrawal R,Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD Int Conf. Management of Date,Washington D C, 1993. 207-216.
  • 2Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proc. 20th Int. Conf. on VLDB,Santiago,Chile,1994. 487-499.
  • 3Houtsma M, Swami A. Set-oriented mining for association rules in relational databases. In: Yu P, Chen A, eds. Proc. of the Int. Conf. on Data Engineering, Los Alamitos, CA: IEEE Computer Society Press, 1995.25-33.
  • 4Han J, Fu Y. Discovery of multiple-level association rules from large databases. In: Proc. 21th Int. Conf. on VLDB, Zurich, Switzerland, 1995. 420-431.
  • 5Han J,Kamber M. Data Mining: Concepts and Techniques. Beijing: High Education Press,2001.
  • 6Bayardo R. Efficiently mining long patterns from databases. In: Haas L M, Tiwary A, eds. In:Proc. of the ACM SIGMOD Int Conf. on Management of Data. New York: ACM Press,1998. 85 -93.
  • 7Lin Dao-I, Kedem Z M. Pincer-Search: a new algorithm for discovering the maximum frequent set. In: Schek H J, Saltor F, Ramos I. et al. , eds. Proc. of the 6th European Conf on Extending database Technology. Heidel-berg: Springer_Veriag, 1998. 105-119.
  • 8路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 9Han J, Jian Pei, Yiwen Y. Mining Frequent Patterns Without Candidate Generation. In: Proceedings 2000 ACM-SIGMOD Int. Conf. Management of Data, Dallas. TX,2000. 1-12.
  • 10宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164

二级参考文献3

  • 1Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 2Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 3路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部