期刊文献+

一种基于单事务项集组合的频繁项集挖掘算法 被引量:4

Algorithm of Frequent Itemsets Mining Based on Single Transaction Itemsets Combination
下载PDF
导出
摘要 Apriori是挖掘频繁项集的基本算法,目前该算法及其优化变种都没有解决候选项及重复扫描事务数据库的问题。文章通过对Apriori及其优化算法的深入探究,提出了一种基于单事务组合项集的挖掘算法,该算法在一个事务内部对"数据项"进行组合,在事务数据库中对所有相同"项集"进行计数。不经过迭代过程,不产生候选项集,所有频繁项集的挖掘过程只需对事务数据库一次扫描,提高了频繁项集挖掘效率。 Apriori is a basic algorithm for frequent itemsets mining. At present, neither Neither Apriori nor its variations resolve some problems which is candidate item and scans transaction database repeatedly. This paper makes a profound research on Apriori and proposes a novel algorithm based on single transaction combination itemsets for mining. The algorithm combines data item to form an itemsets in one transaction database and counts the same itemsets in all transaction databases. Moreover, there is no iteration and candidate itemsets produced by the algorithm, and the mining process scans the traction database only one time, therefore, this algorithm is more effective.
作者 曾波
出处 《计算机科学》 CSCD 北大核心 2008年第1期196-197,226,共3页 Computer Science
基金 重庆市自然科学基金(2006BA6015)重点资助项目
关键词 频繁项集 APRIORI 单事务项集组合 候选项 Frequent itemsets,Apriori, Single transaction itemsets combination, Candidate item
  • 相关文献

参考文献9

  • 1Park J S,Chen M S,Yu P S. An Effective Hash Based Algorithm for Mining Association Rules [R]. In: Proceedings of the 1995 ACM SIOMOD International Conference on Management of Data, San Jose,CA, 1995. 175-186.
  • 2Agrawa 1R, Imielinski T, Swami A. Mining association rules between sets of items in large databases (C). In: Buneman P, Jaiodia S,eds. Proc. of the ACM SIGMOD Conf. on Management of Data (SIGMOD'93). New York: ACM Press, 1993. 207-216.
  • 3Agrawa 1R, Srikant R. Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C, eds. Proc. of the 20th Int'l Conf. on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994. 478-499.
  • 4Savasere A, Omiecianski E, Navathe S. An efficient algorithm forminin gas sociation rules in large databases.
  • 5Toivonen-H. Sampling Large Databases for Association Rules. In: Proc of the 22nd Int'l Conf. on Very Large Data Bases. Mum bai, India, 1996. 134-145.
  • 6Brin S, Motwani R, Ullman J D, Tsur S. Dynamic itemset counting and implication rules for market basket data. In: ACM SIGMOD International Conference on the Management of Data, May 1997. 255-264.
  • 7Han Jiawei, Kamber M. Data Mining Concepts and Techniques, 2001. 225-244.
  • 8黄传明.一种基于散列技术和事务压缩的关联规则挖掘算法[J].计算机工程,2003,29(22):117-118. 被引量:11
  • 9马盈仓.挖掘关联规则中Apriori算法的改进[J].计算机应用与软件,2004,21(11):82-84. 被引量:24

二级参考文献5

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database. Washington, DC: In Proc. 1993 ACMSIGMOD Int. Conf. Management of Data, 1993-05:207-216
  • 2[2]Park J S, Chen M S, Yu P S. An Effective Hash Based Algorithm for Mining Association Rules. San Jose, CA:In Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data, 1995-05:175-186
  • 3[3]Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation. Dallas,TX:In Proc.2000 ACM-SIGMOD Iht. Conf.Management of Data, 2000-05:1-12
  • 4[4]Han J, Kambe M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., 2001
  • 5范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..

共引文献33

同被引文献46

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部