摘要
提出了基于随机微分方程的动态分裂采样方法,实现了对闭代数曲线曲面的均匀采样,并通过边界盒约束,建立整个空间到边界盒的连续映射实现对开放式代数曲线曲面的均匀采样。该方法最大的特点在于它对拓扑结构复杂(有自交、含两个以上的多分支或不连通)的代数曲线曲面采样同样效果很好。
A dynamic fission sampling method (DFS) for algebraic curves and surfaces based on stochastic differential equations is proposed. Sample points distribute uniformly on the closed curves and algebraic surfaces. Well-distributed sampling is realized on open curves and surfaces as well with boundary conditions imposed. The best point is that algebraic curves and surfaces with complex topological shape such as those with self-intersection curves, multi-branches and disconnected branches can be sampled uniformly and effectively by this method.
出处
《计算机应用与软件》
CSCD
北大核心
2008年第1期56-57,69,共3页
Computer Applications and Software
基金
浙江省自然科学资助项目(Y104420)
浙江省教育厅自然基金(20060676)。
关键词
代数曲线曲面
随机微分方程
动态分裂采样方法
Algebraic courves and surfaces Stochastic differential equations Dynamic fission sampling method