期刊文献+

干旱胁迫下氮素营养与根信号在气孔运动调控中的协同作用 被引量:11

Nitrate as an Enhancer of Root Signal in the Regulation of Stomatal Movement in Plants under Drought Stress
下载PDF
导出
摘要 干旱胁迫下根系与地上部分之间的信息传递可使植物叶片及时感知土壤水势变化,从而使植物在没有真正受到干旱伤害时即可做出主动、快速的抗旱应答反应,而在这一过程中,脱落酸(abscisic acid,ABA)和pH起着关键的作用。本研究表明,干旱胁迫下鸭趾草(Commelina communisL.)、番茄(Lycopersicon esculentum Mill.)和向日葵(Helianthus annuusL.)木质部汁液中pH的变化很不相同,且该pH变化和木质部汁液中硝态氮离子浓度的变化没有直接的关系;然而,饲喂实验表明,无论对于何种植物,蒸腾流中硝态氮离子浓度的增加都可有效地增加气孔对ABA的敏感度;分根实验进一步表明,土壤中硝态氮营养的增加可明显提高气孔对根信号的敏感度。以上结果说明,氮素营养可以和根信号相互作用共同操纵气孔运动。 Plants can sense changes in soil water status before obvious water deficit occurs in shoots. Abscisic acid (ABA) and pH are key signals mediating root-to-shoot signaling. Here we report that drought leads to changes in xylem pH differently in Commelina communis L., tomato(Lycopersicon esculentum Mill.) and sunfiower(Helianthus annuus L.). The drought-induced changes in pH were not related to changes in xylem nitrate content. However, for the plant species tested, nitrate was able to increase the stomatal sensitivity to ABA in detached leaves. Moreover, root-splitting experiments demonstrated that supplying extra nitrate in soil increased the stomatal sensitivity to root-sourced soil-drying signals when the nitrate concentration in the xylem was lifted. Our results suggest that nitrate can enhance the root signal and thereby jointly regulate stomatal movement under drought stress.
出处 《植物学通报》 CSCD 北大核心 2008年第1期34-40,共7页 Chinese Bulletin of Botany
基金 国家自然科学基金(No.30470160) 国家重点基础发展计划(No.2003CB114300)
关键词 干旱 氮素营养 根信号 气孔运动 drought, nitrate, root signals, stomatal movement
  • 相关文献

参考文献23

  • 1Cometock JP (2002). Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53, 195-200.
  • 2Davies W J, Zhang J (1991). Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42, 55-76.
  • 3Dodd IC, Tan LP, He J (2003). Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? J Exp Bot 54, 1281-1288.
  • 4Hartung W, Radin JW, Hendrix DL (1988). Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves: role of apoplastic pH. Plant Physiol 86, 908-913.
  • 5Holbrook NM, Shashidhar VR, James RA, Munns R (2002). Stomatal control in tomato with ABA deficient roots: response of grafted plants to soil drying. J Exp Bot 53, 1503-1514.
  • 6Jia W, Davies WJ (2007). Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced ABA signals. Plant Physiol 143, 68-77.
  • 7Jia W, Xing Y, Lu CM, Zhang J (2002). Signal transduction from water stress perception to ABA accumulation. Acta Bot Sin 44, 1135-1141.
  • 8Khallil AAM, Grace J (1993). Does xylem sap ABA control the stomatal behaviour of water-stressed sycamore seedlings? J Exp Bot 44, 1127-1134.
  • 9Krauss A (1978). Tuberization and abscisic acid content in Solanum tuberosum as affected by nitrogen nutrition. Potato Res 21, 183-193.
  • 10Lips SH (1997). The role of inorganic nitrogen ions in plant adaptation processes. Russ J Plant Physiol 44, 421-431.

同被引文献207

引证文献11

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部