期刊文献+

最大熵分布在投资组合中的应用研究 被引量:1

A Study on Maximum Entropy Distribution in Portfolio
下载PDF
导出
摘要 在不完全市场对收益率分布的确定存在很大的主观性,使得投资组合理论并未建立在合理的基础上,在一定程度上影响了实际投资效果。建立了组合收益率的最大熵分布,旨在为更好的投资提供新思路。对n支股票构成的投资组合系统,在已获取信息条件下,最大化熵函数,得到最大熵分布,并给出了该优化模型的解。结果表明:最大熵分布是根据部分信息进行推理时比较客观的分布,同时用熵解决了度量该投资组合系统的不确定性问题,从而为投资组合系统风险的度量提供有效参考。 The subjectivity, confirming the portfolio return distribution, makes the portfolio theory based on irrationality and influences the practical invest in an incomplete market. This paper builds the maximum entropy distribution of the portfolio return to give a new idea in portfolio. A portfolio system consisted of stocks was researched and a maximum entropy distribution was built under the all information. The solution of the optimization model was also obtained. It indicated that the maximum entropy distribution was more objective and entropy measures the uncertainty of a portfolio system rationally. This could give a reasonable reference to the system risk measure.
作者 张阚 丰雪
出处 《沈阳农业大学学报》 CAS CSCD 北大核心 2007年第6期881-884,共4页 Journal of Shenyang Agricultural University
基金 沈阳农业大学校青年科研基金项目(2006114)
关键词 投资组合 最大熵分布 不确定性 信息 风险 portfolio maximum entropy distribution uncertainty information risk
  • 相关文献

参考文献6

二级参考文献40

  • 1姜丹,钱玉美.效用风险熵[J].中国科学技术大学学报,1994,24(4):461-469. 被引量:17
  • 2[1]Markowitz H. Portfolio Selection: Efficient Diversification of Investments[M], New York:Wiley, 1959.
  • 3[2]Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 3(7): 77-91.
  • 4[3]Konno H, Yamazaki H. Mean-variance deviation portfolio optimization model and its applications to tokyo stock market[J], Management Science, 1991, 37(5):519-531.
  • 5[4]Arnott R D, Wagner W H. The measurement and control of trading costs[J]. Financial Analysts Journal, 1990, 46(7): 73-80.
  • 6[5]Brennan M J. The optimal number of securities in a risky asset portfolio when there are fixed costs of transaction: theory and some empirical results[J]. Journal of Financial Quantitative Analysis, 1975, 10: 483-496.
  • 7[6]Pogue G A. An extension of the Markowitz portfolio selection model to include variable transaction costs, short sales, leverage policies and taxes[J]. Journal of Finance, 1970,25:1005-1028.
  • 8[7]Yoshimoto A. The mean-variance approach to portfolio optimization subject to transaction costs[J]. Journal of the Operational Research Society of Japan,1996, 39: 99-117.
  • 9[8]Zhongfei L, Shouyang W, Xiaotie D. A linear programming algorithm for optimal portfolio selection with transaction costs[J]. International Journal of Systems Science, 2000,31: 107-117.
  • 10[9]Bellman R, Zadeh L A. Decision making in a fuzzy environment[J]. Management Science,1970, 17: 141-164.

共引文献82

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部