期刊文献+

植物对锰的吸收运输及对过量锰的抗氧化响应 被引量:10

Manganese Uptake and Transportation as well as Antioxidant Response to Excess Manganese in Plants
下载PDF
导出
摘要 锰(Mn)毒是酸性土壤上限制作物生长的重要因素。植物体内Mn^(2+)吸收运输的转运蛋白或将Mn^(2+)分隔储存于内膜细胞器(如液泡)中,或在细胞内Mn^(2+)运输及调节中起重要作用。近年,编码这些转运蛋白的基因已被分离鉴定。另外,高Mn胁迫极易诱导植物产生氧化胁迫,抗氧化系统在清除高Mn胁迫诱导产生的活性氧过程中起到重要作用。文章重点就承担Mn^(2+)跨膜运输的膜转运蛋白以及植物抗氧化系统对高Mn胁迫的响应两方面进行了综述,并结合作者的研究提出看法和展望。 Manganese (Mn) is an essential micronutrient throughout all stages of plant development. Mn plays an important role in many metabolic processes in plants. It is of particular importance to photosynthetic organisms in the chloroplast of which a cluster of Mn atoms at the catalytic centre function in the light-induced water oxidation by photosystem Ⅱ, and also function as a cofactor for a variety of enzymes, such as Mn-SOD. But excessive Mn is toxic to plants which is one of the most toxic metals in acid soils. The knowledge of Mn^2+ uptake and transport mechanisms, especially the genes responsible for transition metal transport, could facilitate the understanding of both Mn tolerance and toxicity in plants. Recently, several plant genes were identified to encode transporters with Mn^2+ transport activity, such as zinc-regulated transporter/ironregulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, natural resistance-associated macrophage protein (Nramp) transporters, cation/ H^+ antiporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPase. In addition, excessive Mn frequently induces oxidative stress, then several defense enzymes and antioxidants are stimulated to scavenge the superoxide and hydrogen peroxide formed under stress. Mn-induced oxidative stress and anti-oxidative reaction are very important mechanisms of Mn toxicity and Mn tolerance respectively in plants. This article reviewed the transporters identified as or proposed to be functioning in Mn^2+ transport, Mn toxicity-induced oxidative stress, and the response of antioxidants and antioxidant enzymes in plants to excessive Mn to facilitate further study. Meanwhile, basing on our research results, new problems and views are brought forward.
出处 《植物生理与分子生物学学报》 CAS CSCD 北大核心 2007年第6期480-488,共9页 Journal Of Plant Physiology and Molecular Biology
基金 国家自然科学基金项目(No.30671241)资助。
关键词 转运蛋白 氧化胁迫 manganese transporter oxidative stress aluminum
  • 相关文献

参考文献52

  • 1Al-aghabary K, Zhu ZJ, Shi QH (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27(12): 2101-2115.
  • 2Bartsevich VV, Pakrasi HB (1996). Manganese transport in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 271:26057-26061.
  • 3Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003). Differential regulation of NRAMP and IRT metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697-24704.
  • 4Bueno P, Piqueras A (2002). Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures. Plant Growth Regul 36:161-167.
  • 5Candan N, Tarhan L (2003). The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci 165:769-776.
  • 6Carver BF, Ownby JD (1995). Acid soil tolerance in wheat. Adv Agron 54:117-173.
  • 7Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003). Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131- 1142.
  • 8Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004). Biochemical changes in barley plants after excess supply of copper and manganese. Environ Exp Bot 52:253-266.
  • 9Ducic T, Leinemann L, Finkeldey R, Polle A (2006). Uptake and translocation of manganese in seedlings of two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca). New Phytol 170:11-20.
  • 10Ducic T, Pole A (2005). Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17(1): 103-112.

二级参考文献37

共引文献153

同被引文献138

引证文献10

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部