期刊文献+

PSO算法加速因子的非线性策略研究 被引量:28

Study on the Nonlinear Strategy of Acceleration Coefficient in Particle Swarm Optimization (PSO) Algorithm
下载PDF
导出
摘要 为了有效地控制PSO算法的全局和局部搜索能力,着重分析了PSO算法中加速因子对粒子收敛的影响,提出加速因子采用反余弦非对称策略能有效提高PSO算法的搜索性能。对5种加速因子策略使用4个著名的基准函数进行测试,试验结果表明,反余弦非对称方法可以使粒子在搜索的初期获得更好的多样性,在算法后期则可以有效增强粒子的搜索能力,从而使算法具有更强的摆脱局部极值的能力,提高算法的收敛精度。 In order to control the global and local search of particle swarm optimization(PSO)efficiently,this paper mainly analyzed the effect of acceleration coefficients in PSO and pointed out that dissymmetrical and arc cosine method could effectively enhance the performance of PSO.We used four benchmark functions to test 5 different setting strategies of acceleration coefficient.The experimental results show that the proposed nonlinear method can reserve the diversity of swarm at the early stages of the optimization,and it also can avoid local optimum searching at the later stages to improve the convergence of the PSO algorithm.
出处 《长江大学学报(自科版)(上旬)》 CAS 2007年第4期1-4,16,共5页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金 国家自然科学基金项目(10471083) 教育部科学技术研究重点基金项目(206073) 福建省自然科学基金项目(A0610012) 福建省科技厅重点项目(2004H007)
关键词 粒子群优化算法(PSO) 加速因子 非线性 particle swarm optimization acceleration coefficient nonlinear
  • 相关文献

参考文献2

二级参考文献16

  • 1Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 2Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 3Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 4Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 5Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 6Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 7Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.
  • 8Kennedy J,Eberhart R.Particle Swarm Optimization[C] //IEEE Service Center.Proc.IEEE Int.Conf.on Neural Networks.Perth:Perth IEEE Press,1995:1942-1948.
  • 9Shi Yu hui,Eberhart R.Parameter selection in particle swarm optimization[C] //IEEE Proc.of the 7th Annual Conf on Evolutionary Programming.Washington D C:Springer-Verlag,1998:591-600.
  • 10Kenneay J,Eberhart R,Shi Yu hui.Swarm intelligence[M].San Francisco:Morgan Kaufman,2001.

共引文献326

同被引文献212

引证文献28

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部