摘要
采用权分担值的思想讨论了亚纯函数关于微分多项式分担值的唯一性问题.证明了:设n,m(≥2)为正整数,且满足m与n+1互素,f,g是两个非常数亚纯函数.若fn(fm-1)f′与gn(gm-1)g′分担(1,k),且满足下列条件之一:(1°)k≥2,n>m+10;(2°)k=1,n>23m+12,就有f≡g.
Using the idea of weighted sharing, deal with the uniqueness problems on meromorphic functions concerning differential polynomials. Proved the following result: Let n, m(≥2) be two positive integers , and satisfy n and m+1 are prime to each other; let f, g be two nonconstant meromorphic functions, if f^n(f^m-1)f′ and g^n(g^m-1)g′share(1, k) and one of the following conditions is satisfied.(1°)k≥2,n〉m+10;(2°)=1,n〉3/2m+12,then f≡g.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第1期12-17,共6页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
亚纯函数
微分多项式
权分担值
唯一性
meromorphic function
differential polynomial
weighted sharing
uniqueness