期刊文献+

基于信息素适量更新与变异的高效蚁群算法 被引量:6

Efficient ant colony algorithm based on right pheromone updating and mutation
下载PDF
导出
摘要 为了克服基本蚁群算法求解速度慢、易于出现早熟和停滞现象的缺陷,提出了一种高效的蚁群算法(EACA)。它修改了基本蚁群算法中信息素的更新规则,使得每轮搜索后信息素的增量能更好地反映解的质量,以加快收敛;另外,它采用了一种启发式变异方法对路径进行优化,以产生搅动效应,避免早熟。以TSP问题为例进行的实验结果表明:提出的算法优于ACA和ACAGA。 To overcome the default of slow convergence speed,precocity and stagnation in the basic ant colony Algorithm(ACA), we proposed an Efficient Ant Colony Algorithm( EACA ).It modifies the rule of updating pheromones in ACA,so that after every round of search,the increment of pheromone can better reflect the quality of a solution to quicken the convergence;In addition,it uses the heuristic mutation to optimize tours,generate disarrangement effect and avoid precocity.Experimental results for solving TSP(Traveling Salesman Problem) show that the proposed algorithm outperforms ACA and ACAGA.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第1期45-47,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60672137) 高等院校博士学科点专项科研基金(theChina Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060497015)。
关键词 蚁群算法 信息素更新规则 变异 TSP ant colony algorithm rule of updating pheromones mutation TSP
  • 相关文献

参考文献6

  • 1Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1 (1):53-66.
  • 2Guo Jinglei,Wu Yong,Liu Wei.An ant optimization algorithm with evolutionary operator for traveling salesman problem[C]//ISDA'06,Sixth International Conference on Intelligent Systems Design and Applications,2006,1:385-389.
  • 3徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 4肖鹏,李茂军,张军平,叶涛.单亲遗传算法及其在物流配送系统中的应用[J].系统工程,2000,18(1):64-66. 被引量:99
  • 5Cheng-Fa Tsai,Chun-Wei Tsai,Ching-Chang Tseng.A novel and efficient ant-based algorithm for solving traveling salesman problem[C]//IEEE International Conference on Systems,Man and Cybernetics,2002,2:320-325.
  • 6孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38

二级参考文献22

  • 1DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the ttraveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1): 53-66.
  • 2DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics,1996,26(1):1-13.
  • 3PILAT M L, WHITE T. Using genetic algorithms to optimize ACS-TSP[A]. Proceedings of Ant Algorithms: Third International Workshop, ANTS 2002[C]. Brussels, Belgium, 2002. 282-287.
  • 4WHITE T, PAGUREK B, Oppacher F. ASGA: Improving the ant system by integration with genetic algorithms[A]. Proceedings of the Third Annual Genetic Programming Conference[C]. Morgan Kaufmann, 1998. 610-617.
  • 5STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer System, 2000, 16(8): 889-914.
  • 6ROSENKRANTZ D J, STEARNS R E, LEWIS P M. An analysis of several heuristics for the traveling salesman problem[J].SIAM J Comput, 1977, 6:563-581.
  • 7TSPLIB [EB/OL]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html, 2003.
  • 8GAMBARDELLA L M, DORIGO M. Ant-Q: a reinforcement learning approach to the traveling salesman problem[A]. Proceedings of ML-95, Twelfth Intern Conf on Machining[C]. Morgan Kaufmann, 1995. 252-260.
  • 9Bonabeau E, Dorigo M, Theralaz G. Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute in the Sciences of the Complexity. New York: Oxford University Press, 1999.
  • 10Dorigo M, Maniezzo V, Colomi A, Ant system: Optimization by a colony of cooperative learning approach to the traveling Agents,IEEE Trans, on Systems, Man, and Cybernetics, 1996,26(1):29-41,

共引文献186

同被引文献57

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部