期刊文献+

变点理论在极值分布阈值选取中的应用 被引量:4

A New Method to Choose the Threshold in Extreme Value Distribution:Applying the Change Point Theory
下载PDF
导出
摘要 极值理论已经被广泛应用于解决金融、保险等领域的厚尾分布问题,而阈值的选取一直是极值理论实际应用的难点和重点。在已有研究成果基础上,本文尝试引入变点理论进行定量化的阈值选取。分析了变点理论进行阈值选取的基本原理和方法,利用Burr分布产生的随机样本进行模拟,得到了较好的效果,并在此基础上运用S&P500和Danish火灾保险数据进行了实证分析。 Extreme Value Theory has been widely used in the solutions of the distribution problems in the field of finance and insurance. Selection of threshold,however,has long been treated as the key point and a difficult task in the application. This paper attempts to use the change point theory to select the threshold quantitatively based on the previous work existing in the literatures. The fundamental and the basic method used in the selection of threshold value using the change point theory has been analyzed and numerical simulation has been performed by random sample generated from Burr distribution method, and a good result has been obtained. Moreover, the empirical analysis is also carried out by using the MYMSP500 and Danish fire insurance data.
出处 《系统工程》 CSCD 北大核心 2007年第11期97-101,共5页 Systems Engineering
基金 中国科学院知识创新工程重要方向项目(KJCX3-SYW-S02) 中国科学技术大学创新基金资助项目(KD2006062)
关键词 极值分布 变点 阈值 随机模拟 EVT Distribution Change Point Threshold Random Model
  • 相关文献

参考文献13

  • 1Beirlant J,Dierckx G,Goegebeur Y,Matthys G.Tail index estimation and an exponential regression model[M].Springer,1999:177-200.
  • 2陈学华,杨辉耀,黄向阳.POT模型在商业银行操作风险度量中的应用[J].管理科学,2003,16(1):49-52. 被引量:39
  • 3Embrechts P,et al.Modelling extreme events for insurance and finance[M].Springer Verlag,1997.
  • 4Danielsson J,De Haan L,Peng L,De Vries C G.Using a bootstrap method to choose the sample fraction in tail index estimation[J].Journal of Multivariate Analysis,2001:1-14.
  • 5Drees H,et al.Selecting the optimal sample fraction in univariate extreme value estimation[J].Stochastic Processes and their Applications,1998:149-172.
  • 6Feuerverger A,Hall P.Estimating a tail exponent by modelling departure from a Pareto distribution[J].The Annals of Statistics,1999:760-781.
  • 7Matthys G,Beirlant J.Estimating the extreme value index and high quantiles with exponential regression models[J].Statistica Sinica,2003:853-880.
  • 8Huisman R,et al.Fat tails in small samples[Z].1997.
  • 9Zhou C Y,Wu C F,Liu H L,Liu F B.A new method to choose the threshold in the POT model[Z].2007.
  • 10史道济,张春英.尾部指标估计中的阈值选择[J].天津理工大学学报,2006,22(6):78-81. 被引量:13

二级参考文献27

  • 1[1]HILL B M.A simple general approach to inference about the tail of a distribution[J].Ann.Stat,1975,3:1163-1174.
  • 2[2]GALAMBOS J.The Asymptotic Theory of Extreme Order statistics[M].2.Malabar,Florida:Krieger,1987.
  • 3[3]BEIRLANT J,DIERCKX G,GUILLOU A,et al.On exponential representations of log-spacings of extreme order statistics[J].Extremes,2002,5(2):157-180.
  • 4[4]FEUERVERGER A,HALL P.Estimating the tail exponent by modeling departure from a Pareto distribution[J].Ann.Statist,1999,27:760-781.
  • 5[5]BEIRLANT J,DIERCKX G,GOEGEBEUR Y,et al.Tail index estimation and an exponential regression model[J].Extremes,1999,2(2):177-200.
  • 6[6]MATFHYS G,BEIRLANT J.Adaptive threshold selection in tail index estimation[C]//Extremes and Integrated Risk Management,London:2000.37-49.
  • 7[7]DANIELSSON J,de HANN L,PENG L AND de VRIES C G.Using a bootstrap method to choose the sample fraction in tail index estimation[J].Journal of Multivariate Analysis,2001,76(2):226-248.
  • 8[8]GOMES M I,OLIVEIRA O.The bootstrap methodology in statistics of extremes-choice of the optimal sample fraction[J].Extremes,2001,4(4):331-358.
  • 9[9]DREES H,KAUFMANN E.Selecting the optimal sample fraction in univariate extreme value estimation[J].Stoch.Proc.Applications.1998,75:149-172.
  • 10Philippe Jorion. Value at Risk, 2nd edition[M] . McGraw- Hill, 2001.

共引文献132

同被引文献69

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部