期刊文献+

一类具有Hlling-Ⅱ型功能性响应函数的捕食模型 被引量:1

A kind of predator-prey model with Hlling-Ⅱ functional response
下载PDF
导出
摘要 研究一类具有Hlling-Ⅱ型功能性响应函数的捕食模型.首先证明当系数满足一定条件时,常微分方程组和偏微分方程组的唯一正常数平衡解的局部渐近稳定性,然后利用最大值原理和Harnack不等式得到椭圆型方程组正解的先验估计,最后利用能量方法证明了如果种群扩散率强时,则椭圆型方程组不存在非常数正解. In this paper, a kind of predator-prey model with Holling- Ⅱ functional response is discussed. It is proved that the unique positive constant steady states for the ODE system and PDE system are locally asymptotical stable under some proper conditions for the coefficients. Then it establishes the prior estimates on positive solutions of the corresponding elliptic system by Harnack inequality and maximum principle. Using energy method, it establishes the non-existence of non-constant positive solutions of the elliptic system.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2007年第4期26-30,共5页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK2006064)
关键词 捕食模型 局部稳定 非常数正解 predator-prey model local stability non-constant positive solution
  • 相关文献

参考文献9

  • 1YAGI A. Global solution to .some quasilinear parabolic system in population dynamics [J]. Nonlinear Anal, 1993, 21(8) : 603-630.
  • 2KIM I K, LIN Zhi-gui. Coexistence of three species in a strongly coupled elliptic system [J]. Nonlinear Anal, 2003, 55(3): 313-333.
  • 3ChenBin,PengRui.COEXISTENCE STATES OF A STRONGLY COUPLED PREY-PREDATOR MODEL[J].Journal of Partial Differential Equations,2005,18(2):154-166. 被引量:3
  • 4刘佳,周桦.带扩散的具性别结构的捕食模型分析[J].扬州大学学报(自然科学版),2006,9(4):12-16. 被引量:1
  • 5郁胜旗.一类响应函数依赖于猎物的食物链模型的定性分析[D].徐州:徐州师范大学,2007.
  • 6PANG P Y H, WANG Ming-xin. Qualitative analysis of a ratio-dependent prey-predator system with diffusion [J]. Proc Roy Soc Edinburgh Sect A, 2003, 133(4): 919-942.
  • 7HENRY D. Geometric theory of semilinear parabolic equations [M]// DOLD A, ECKMANN B. Lecture Notes in Mathematics (840). Berlin: Springer-Verlag, 1993: 98-100.
  • 8LIN Chang-shou, NI Wei-ming, TAKAGI I. Large amplitude stationary solutions to a chemotaxis systems [J]. J Dift Eqs, 1988, 72(1): 1-27.
  • 9LOU Yuan, NI Wei-ming. Diffusion, self-diffusion and cross-diffusion [J]. J Diff Eqs, 1996, 131(1): 79-131.

二级参考文献26

  • 1刘汉武,王荣欣,刘建新.具有性别结构的食饵-捕食者模型[J].生物数学学报,2005,20(2):179-182. 被引量:30
  • 2耿春梅,甘文珍,周桦.一类具有阶段结构的捕食模型的稳定性[J].扬州大学学报(自然科学版),2006,9(1):9-14. 被引量:8
  • 3Okubo A. Diffusion and Ecological Problems: Mathematical Models. Berlin-Heidelberg,1980.
  • 4Ni W M. Diffusion, cross-diffusion and their spike-layer steady states. Notices. Amer.Math. Soc., 1998, 45: 9-18.
  • 5Btat J, Brown K J. Bifurcation of steady-state solutions in predator-prey and competition systems. Proc. Roy. Soc. Edinburgh, 1984, 97A: 21-34.
  • 6Dancer E N. On positive solutions of some pairs of differential equations. Trans. Amer.Math. Soc., 1984, 284: 729-743.
  • 7Li L. Coexistence theorems of steady-states for predator-prey interacting systems. Trans.Amer. Math. Soc., 1988, 305: 143-166.
  • 8Lopez-Gomez J, Pardo R. Existence regions in Lotka-Volterra model with diffusion. Nonlinear Anal., 1992, 19: 11-28.
  • 9Lopez-Gbmez J, Pardo R. Existence and uniqueness of coexistence states for the predatorprey model with diffusion: the scalar case. Differential Integral Equations, 1993, 6: 1025-1031.
  • 10Pao C V. Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992.

共引文献2

同被引文献9

  • 1黄运金,孔宪荣,王培林.捕食模型正周期解存在性的一个注记[J].数学研究,2009,42(1):63-67. 被引量:1
  • 2LI Yong-kun. On a periodic mutualism model [J]. ANZIAM J, 2001, 42(4): 569-580.
  • 3HESS P. Periodic parabolic boundary value problems and positivity [M]//Pitman Research Notes in Mathematics. New York: Longman Scientific and Technical, 1991: 132-139.
  • 4GAN Wen-zhen, 1.IN Zhi-gui. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model[J]. J Math Anal Appl, 2008, 337(2): 1089-1099.
  • 5ZHAO Xiao qiang. Global asymptotic behavior in a periodic competitor-competitor-mutualist parabolic system [J].Nonlinear Anal, 1997, 29(5): 551-568.
  • 6PAO C V. Stability and attractivity of periodic solutions of parabolic systems with time delays [J]. J Math Anal Appl, 2005, 304(2): 423-450.
  • 7TIAN Can-rong, LIN Zhi-gui. Periodic solutions of reaction diffusion systems in a half-space domain [J].Nonlinear Anal: Real World Appl, 2008, 9(3): 811-821.
  • 8凌智,田灿荣.一类热传导自由边界问题的数值解法[J].扬州大学学报(自然科学版),2008,11(4):12-15. 被引量:5
  • 9谢强军,张光新,周泽魁.一类周期反应扩散方程正周期解的存在性[J].数学物理学报(A辑),2009,29(2):465-474. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部