期刊文献+

关于四元Heisenberg群上次Laplace算子的唯一延拓性(英文)

On unique continuation properties for the sub-Laplacian on the quaternionic Heisenberg group
下载PDF
导出
摘要 建立了四元Heisenberg群上次Laplace算子的函数表示公式,并讨论了球面函数的性质,然后给出了带位势的次Laplace方程解的唯一延拓性结果. In this paper, representation formulas Heisenberg groups are established and then some equations with potentials are given and properties for the sub-Laplacian on unique continuation results to solutions of quaternionic sub-Laplace.
出处 《中国科学院研究生院学报》 CAS CSCD 2008年第1期1-11,共11页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 supported by the Natural Science Basic Research Planin Shaan Xi Province of China(2006A09)
关键词 唯一延拓性 表示公式 球面函数 四元Heisenberg群 次LAPLACE算子 unique continuation, representation formula, spherical function, quaternionic Heisenberg group, sub-Laplaeian
  • 相关文献

参考文献4

二级参考文献26

  • 1Helgason, S.: Differential geometry, Lie groups and Symmetric space, s, Academic Press, New York, 1978.
  • 2Barker, S. R, Salamon, S. M.: Analysis on et generalized Heisenberg group. J. London Math. Sot, 28(2),184-192 (1983).
  • 3Allcock, D.: An isoperimetric inequality for the Heisenberg groups. Geom. and Funct. Anal, 8(2), 219-233(1998).
  • 4Zhu, F. L.: Tile heat kernel and tile Riesz transforms on the quaternionic Heisenberg groups. Pacific Jour. of Math, 209(1), 175-199 (2003).
  • 5Hueber, H, Muller, D.: Asymptotics for some Green kernels oil the Heisenberg group and the Martin boundary. Math. Ann, 283, 97-119(1987).
  • 6Hulanicki, A.: The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on tile Heiscnberg group. Studia Math, Tom, LVI, 165-173(1976).
  • 7Gavcau, B,: Principe de moindre action, propagation de la chaleur et, cstimccs sous elliptiques surcertainsgroupes nilpotents, Acta Math,, 139, 95-,153 (1977).
  • 8Erdelyi, A.: Asymptotic expansions, Dover Publications, Inc, 1956.
  • 9Magnus, W, Oberhettings, F, Soni, R, P.: Formulas and theorems for the special functions of mathematical physics, Grundlehren 52, Springer-Verlag, 1966.
  • 10Brelot, M.: On topological boundaries in potential theory, Lect, Notes in Math, 175, Springer, Berlin,Heidelberg, New-York, 1971.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部