期刊文献+

带宽自适应Mean Shift跟踪算法 被引量:15

Bandwidth-adaptive mean shift tracking algorithm
下载PDF
导出
摘要 提出了一种先进行空间定位再确定目标尺度的两级跟踪算法,有效地解决了meanshift算法对尺度变化的适应问题。该算法首先在当前帧对应位置进行降分辨率处理,并以基于增量试探的meanshift跟踪算法收敛点作为当前帧目标中心位置,进而利用对数极坐标变换的旋转、尺度不变性,对目标和候选目标分别进行对数极坐标映射,并通过求取最大归一化相关函数确定目标的尺度变化。跟踪实验表明,该算法可以有效的提高meanshift跟踪算法空间和尺度定位准确性。 A novel two stage method is presented for the efficient determination of target center and scale.improving the adaptability for scale changes. Firstly,the proposed scheme downsamples the eorreesponding parts of current frame,and employs the mean shift algorithm with successive bandwidth trials to derive the center of target candidate. Secondly,by using the scaling and rotation invariance of log-polar transform,the changes of object scale and rotation are converted into transformation in orthogonal coordinate; then the maximum 1-D normalized correlation coefficient is calculated to estimate the scale variance of object. The experiments on various videos show that the proposed method improves the performance of mean shift tracking algorithm with localization accuracy and adaptive bandwidth.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2008年第1期135-138,共4页 Journal of Optoelectronics·Laser
基金 哈尔滨工业大学“211工程”资助
关键词 mean shih 自适应带宽选取 对数极坐标变换 目标跟踪 mean shift adaptive bandwidth selection log-polar transform object tracking
  • 相关文献

参考文献14

  • 1王维雅,丁雪梅,黄向东,谭久彬,李海英.一种小目标快速识别与跟踪方法[J].光电子.激光,2007,18(1):121-124. 被引量:14
  • 2刘贵喜,范春宇,高恩克.基于粒子滤波与多特征融合的视频目标跟踪[J].光电子.激光,2007,18(9):1108-1111. 被引量:12
  • 3Yilmaz A,Shafique K,Shah M.Target tracking in airborne forwardlooking infrared imagery[J].Image and Vision Computing,2003,21(7):623-635.
  • 4Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[A].IEEE Conference on Computer Vision and Pattern Recognition[C].2000,2:142-149.
  • 5LU Wen-guang.Study on methods and implementation of fast object automatic detection and tracking[D].Nanjing,Nanjing University of Science & Technology,2005,17-18.
  • 6彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 7Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-575.
  • 8Comaniciu D,Ramesh V.Mean shift and optimal prediction for efficient object tracking[A].IEEE International Conference on Image Processing[C].2000,3:70-73.
  • 9Collins R T.Mean shift blob tracking through scale space[A].IEEE International Conference on Computer Vision and Pattern Recognition[C].2003,2:234-240.
  • 10Comaniciu D,Meer P.Mean shift analysis and applications[A].IEEE International Conference on Computer Vision[C].1999,1197-1203.

二级参考文献23

  • 1王菊,吴嗣亮.矢量脱靶量测量系统定位算法研究[J].系统工程与电子技术,2004,26(11):1624-1627. 被引量:8
  • 2张昊,黄战华,郁道银,蔡怀宇,刘正.二维图像序列中刚性目标的准确定位方法[J].光电子.激光,2005,16(1):102-104. 被引量:4
  • 3赵其杰,屠大维,高达明,王仁三,陈方泉.一种基于特征线条的虹膜跟踪实用方法[J].光电子.激光,2005,16(2):199-202. 被引量:3
  • 4马奔,史忠科,皮燕妮.成像目标跟踪算法分析[J].西安电子科技大学学报,2005,32(3):477-480. 被引量:11
  • 5裴继红,谢维信,刘上乾.舰船红外成象目标实时识别跟踪算法研究[J].光电工程,1995,22(5):21-31. 被引量:17
  • 6[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 7[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 8[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 9[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 10[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.

共引文献186

同被引文献151

引证文献15

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部