期刊文献+

二维连续体结构的拓扑和材料一体化设计 被引量:2

Integrative Design of Topology and Material of Two-dimensional Continuum Structures
下载PDF
导出
摘要 通过基于Wolff法则的连续体拓扑优化方法所获得的连续体结构最优拓扑中的材料往往呈非均匀性.为了实现二维连续体结构的拓扑和材料的一体化设计,在获取结构的最优拓扑后,利用具有周期性微结构的二维网格结构比拟原正交各向异性非均匀连续体结构,使得两者在力学性能上等效,从而实现最优结构的材料设计.数值算例验证了比拟方法的正确性及材料设计的可行性. An integrative design approach for two-dimensional (2D) continuum structures is introduced. Four steps are contained in the design process. Firstly, the optimal topology of a 2D structure is obtained by using a bionics optimization method,which is based on Wolff' s law in bone mechanics, i. e. , the optimization process of the 2D structure is considered as the remodelling process a piece of bone with the same loading conditions and the optimal material distribution of structure is obtained when the "bone" is in the remodelling equilibrium state. Commonly,the material in the optimal topology of the structure shows heterogeneous, e. g.porous and anisotropic. Therefore,in the second step of the approach, the point is to mesh the whole optimal structure with finite sub-domains. In each sub-domain, the material properties are considered as homogeneous. Thirdly, the material in each sub-domain is substituted for a lattice structure with periodic quadrilateral unit cells. The poles in the unit cell of a lattice structure are determined by the local material elastic properties, i. e. , the lattice structure and the material in the same sub-domain have the same elastic properties. The approach to find the size of the poles in an unit cell is called as pseudo-membrane (PM) method. Firstly, the sub-domains are glued to form a whole structure. To verify the validity of the integrative design approach, a numerical example is given to show the detail design process.
出处 《应用基础与工程科学学报》 EI CSCD 2008年第1期92-102,共11页 Journal of Basic Science and Engineering
基金 国家自然科学基金与创新群体基金(10225212 10421202 10402005) 长江学者和创新团队发展计划以及国家基础性发展规划项目(2005CB321704)资助
关键词 拓扑优化 材料设计 Wolff法则 拟膜法 构造张量 topology optimization, material design Wolff' s law pseudo-membrane method fabric tensor
  • 相关文献

参考文献4

二级参考文献24

  • 1董石麟.我国大跨度空间钢结构的发展与展望[J].空间结构,2000,6(2):3-13. 被引量:92
  • 2董石麟 夏亨熹.正交正放类网架结构的拟板(夹层板)分析法(上)[J].建筑结构学报,1982,(2):14-25.
  • 3Cowin SC.Wolff's law of trabecular architecture at remodelling equilibrium.Journal of Biomechanical Engineering,1986,108(1):83~88
  • 4Odgaard A,Kabel J,van Rietbergen B,et al.Fabric and elastic principal directions of cancellous bone are closely related.Journal of Biomechanics,1997,30(5):487~495
  • 5Zysset PK,Curnier A.An alternative model for anisotropic elasticity based on fabric tensors.Mechanics of Materials,1995,21(4):243~250
  • 6He QC,Curnier A.A more fundamental approach to damaged elastic stress-strain relations.International Journal of Solids and Structures,1995,32(10):1433~1457
  • 7Bendsφe MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering,1988,71(3):197~224
  • 8Bendsφe MP.Optimal shape design as a material distribution problem.Structural Optimization,1989,1:193~202
  • 9Mei YL,Wang XM.A level set method for structural topology optimization and its applications.Advances in Engineering Software,2004,35(7):415~441
  • 10Rodriguez-Velazquez J,Seireg A.Optimizing the shapes of structures via a rule based computer program.Computers in Mechanical Engineering,1985,4(1):2~28

共引文献99

同被引文献21

  • 1阎军,程耿东,刘书田,刘岭.周期性点阵类桁架材料等效弹性性能预测及尺度效应[J].固体力学学报,2005,26(4):421-428. 被引量:25
  • 2吴世平,唐绍锋,梁军,杜善义.周期性复合材料热力耦合性能的多尺度方法[J].哈尔滨工业大学学报,2006,38(12):2049-2053. 被引量:17
  • 3张卫红,汪雷,孙士平.基于导热性能的复合材料微结构拓扑优化设计[J].航空学报,2006,27(6):1229-1233. 被引量:18
  • 4Gibson L J, Ashby M F. Cellular solids: Structure and properties [M]. Cambridge: Cambridge University Press, 1997.
  • 5杜善义,王彪.复合材料细观力学基础[M].北京:科学出版社,1999.
  • 6Tollenaere H, Caillerie D. Continuous modeling of lattice structures by homogenization [J]. Advances in Engineering Software, 1998, 29(7-9): 699-705.
  • 7Ostoja-Starzewski M. Lattice models in micromechanics [J]. Appl. Mech. Rev., 2002, 55(1): 35-60.
  • 8Wadley H N G, Fleck N A, Evans A G. Fabrication and structural performance of periodic cellular metal sandwich structures [J]. Composites Science and Technology, 2003, 63(16): 2331 -2343.
  • 9Wang Q. Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes [J].International Journal of Solids and Structures, 2004, 41(20): 5451-5461.
  • 10Aboudi J, Gilat R. Micromechanical analysis of lattice blocks [J]. International Journal of Solids and Structures, 2005, 42(15): 4372-4392.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部