期刊文献+

水声信号的一种非线性降噪方法 被引量:2

A Nonlinear Noise Reduction Method for the Underwater Acoustic Signal
下载PDF
导出
摘要 采用基于非线性动力学系统的局部投影非线性降噪理论,研究了水声信号的非线性降噪问题,并对传统的局部投影算法进行了改进。采用自适应调整邻域大小的方法,改善了传统局部投影算法的邻域选择问题;利用局部投影算法中局部协方差矩阵存在特征值突变的现象,有效地解决了信号子空间和噪声子空间的划分难题。以Henon混沌时间序列为仿真模型,对传统的局部投影算法,以及改进后的算法的降噪性能进行了验证比较,结果表明,改进后的算法更加有效地抑制了噪声。 A noise reduction method for the underwater acoustic signal was discussed, based on the local-projection (LP) theory of the nonlinear dynamic system. A modified LP algorithm was proposed. Adaptively adjusted neighborhood was used to solve the problem of choosing neighborhood in the traditional LP algorithm. By means of the eigenvalue leap phenomenon that exists in the local covariance matrix in LP algorithm, it is effectively to overcome the difficulty in distinguishing the eigenvectors between signal space and noise space in the signal. Taking chaotic signals generated by Henon map for example, performances of traditional and modified LP algorithm were compared by the computer simulation. Compared with the traditional LP algorithm, the improved one reduces noise more effectively.
作者 伭炜 徐新盛
出处 《海洋通报》 CAS CSCD 北大核心 2008年第1期17-21,共5页 Marine Science Bulletin
关键词 非线性降噪 局部投影 邻域选择 水声信号 nonlinear noise reduction local-projection neighborhood choice underwater acoustic signal
  • 相关文献

参考文献11

  • 1侯平魁,龚云帆,杨毓英,史习智,林良骥.水下目标辐射噪声时间序列的非线性降噪处理[J].声学学报,2001,26(3):207-211. 被引量:33
  • 2Frison T W,Abarbanel H D I,Cembrols B J.Neales chaos in ocean ambient "noise"[J].Journal of Acoustical Society of American,1996,99(3):1527-1539.
  • 3Jako Z.Application of noise reduction to chaotic communications:a case study[J].IEEE Trans.on Circuits and Systems-I:Fundamental Theory and Applications,2000,47(12):1720-1725.
  • 4Herve Dedieu,Andrey Kisel.Communications with chaotic time series:probabilistic methods for noise reduction[J].International Journal of Circuit Theory Application,1999,27:577-587.
  • 5Schweizer SM,Stonick V L,Evans J L.TLS parameter estimation for filtering chaotic time series[C].IEEE Proc.IC SSP.Atlanta GA USA,1996:1609-1612.
  • 6Bowen R.Morkov partitions for ax ion a idiom orphisms[J].Amer.J Math.,1970(92):725-747.
  • 7Zhiwen,Zhu and Henry Leung.Adaptive Blind Equalization for Chaotic Communication Systems Using Extended-Kalman Filter[J].IEEE Trans.on Circuits and Systems-I:Fundamental Theory and Applications,2001,48(8):979-989.
  • 8Kantz H,Schreiber T.Nonlinear Time Series Analysis[M].北京:清华大学出版社,2001.
  • 9Cawley R,Hsu G H.Local-geometric project ion method for noise reduction in chaotic maps and flows[J].Physical Review A,1992(46):3057-3082.
  • 10王勇,吴旭文.混沌信号降噪算法[J].测试技术学报,2006,20(2):179-183. 被引量:3

二级参考文献25

  • 1Gong Y F,Phys Lett A,1999年,258卷,253页
  • 2Bowen R.Morkov partitions for ax ion a idiom orphisms[J].Amer.J Math.,1970(92):725-747.
  • 3Kantz H,Schreiber T.Nonlinear Time Series Analysis[M].北京:清华大学出版社,2001.
  • 4Schittenkopf C.Identification of deterministic chaos by an information-theoretic measure of the sensitive dependence on the initial conditions[J].Physics D,1997(110):173-181.
  • 5Packard N H.Geometry from a Time Series[J].Phys.Rev.lett.,1980(45):712-716.
  • 6Takens F.Detecting strange attractors in turbulence[J].Lectures Notes in Mathematcs,1981(898):366-381.
  • 7Stephen M,Hammal A.A noise reduction for chaotic system[J].Phys.Lett.A,1990,148(8):840-852.
  • 8Donoho D L.De-noising by soft-thresholding[J].IEEE Trans.On information theory,1995,41(5):613-627.
  • 9Mallat,Wenliang H.Sigularity detection and processing with wavelet[J].IEEE Trans on information theory,1992(82):211-223.
  • 10Haykin S.Adaptive Filter Theory[M].Fourth Edition,New Jersey:Prentice Hall,2001.

共引文献34

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部