摘要
将可重复使用运载器(RLV)再入轨道设计分为纵向轨道和侧向轨道设计两个过程:首先引入形状约束因子,在不进行轨道积分的情况下,在再入走廊内快速优化设计RLV再入飞行剖面;然后结合轨道跟踪控制,设计侧向方位误差走廊,快速生成满足末端能量管理(TAEM)接口和航程等要求的再入轨道。进一步提出修正标准飞行剖面参数的航程更新及制导方法,并采用RLV概念模型进行仿真分析。仿真结果表明这种RLV再入轨道设计方法能够快速生成再入标准轨道,相应的RLV再入制导方法可行,且具有较高的制导精度和可靠性,鲁棒性好。
Reentry trajectory plan for reusable launch vehicles (RLV) is divided into two parts : firstly additional shape constraint factors are introduced into designing the longitudinal flight profile with nonlinear programming methods to minimize the heat load at the stagnation point without integrating the motion equations ; next the shape and width of the lateral azimuth error corridor are determined, which are dedicated to generate the entry trajectory with the drag profile following entry guidance. Further more, a range updating method only correcting reference trajectory parameters without altering the nominal profile is applied to reentry guidance. Preliminary numerical simulations are performed with conceptual RLV model, and the results show that the trajectory plan method is able to generate reentry trajectory fast within several secortds and the corresponding reentry guidance is robust for dispersions from the nominal conditions.
出处
《航天控制》
CSCD
北大核心
2007年第6期13-16,共4页
Aerospace Control
关键词
RLV
再入走廊
再入轨道设计
再入制导
Reusable launch vehicle
Reentry corridor
Reentry trajectory
Reentry guidance