期刊文献+

汽车半主动悬架的神经网络控制

Neural Network Control for Semi-active Suspension Automobile
下载PDF
导出
摘要 针对目前标准BP神经网络的缺点,提出基于高阶导数的多记忆BP算法,将能量函数的n阶导数与最速下降方向相结合,构造出一个新的最速下降方向,从而提高了神经网络的学习速度.证明了该算法相对于传统梯度算法的快速性,给出了该算法的实现方法,并进行了算例仿真.为了证明其实效性,设计了汽车半主动悬架神经网络控制器.结果证明,该算法便捷、实用、有效. Regarding drawbacks of the standard BP algorithm algorithm is proposed. It combines the n-th order of energy , a high-order derivative based multiple memory BP function with the direction of the fastest decline to construct a new direction of the fastest decline, and improve the learning speed of the neural network. The new algorithm is compared with the traditional gradient algorithm to show its high computation speed. Implementation of the new algorithm is given. Finally a neural network controller is designed to optimize the performance of the automobile suspension. The result shows that the new algorithm is convenient and effective.
作者 邱浩 熊智
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第1期85-88,共4页 Journal of Applied Sciences
基金 广东省科技计划资助项目(No.2005B10201014)
关键词 神经网络 BP算法 高阶导数 悬架 neural network BP algorithm high order derivative suspension
  • 相关文献

参考文献7

二级参考文献40

  • 1商琳,王金根,姚望舒,陈世福.一种基于多进化神经网络的分类方法[J].软件学报,2005,16(9):1577-1583. 被引量:13
  • 2范睿,李国斌,景韶光.基于实数编码遗传算法的混合神经网络算法[J].计算机仿真,2006,23(1):161-164. 被引量:26
  • 3张育林.动态系统故障诊断理论与应用[M].长沙:国防科技大学出版社,2001.58-71.
  • 4以光卫.陀螺理论与应用[M].北京:北京航空航天大学出版社,1990.268-272.
  • 5张庙康,胡海岩.车辆悬架振动控制系统研究的进展[J].振动.测试与诊断,1997,17(1):7-15. 被引量:43
  • 6[4]Wang,Wen Jie,Tang,Bing Yong.A Fuzzy Adaptive Method for Intelligent Control[ J ].Expert Systems with Applications,1999,16(1):43-48.
  • 7[5]Chyi-Tsong Chen,Shih-Tein Peng.Intelligent Process Control Using Neural Fuzzy Techniques[J].Journal of Process Control,1999,9(6):493-503.
  • 8[11]Wu M,Nakano M,She J H.A Model-based Expert Control Strategy Using Neural Networks for the Coal Blending Process in an Iron and Steel Plant[ J ].Expert Systems with Application,1999,16 (3):271-281.
  • 9[12]Gao Zhiqiang,Thomas A.Trautzsch,James Dawson.A Stable Self-tuning Fuzzy Logic Control System for Industrial Temperature Control Problems[A].IEEE Industrial Ap-plication Society 2000 Annual Meeting and World Conference on Industrial Applications of Electrical Energy[C].USA:Cleveland,2000.
  • 10[13]Frey C W,Sajidman M,Kuntze H B.A Neuro-fuzzy Supervisory Control System for Industrial Batch Processes[A].Proceedings of the 9th IEEE International Conference on Fuzzy Systems FUZZ[C].TX:San Antonio,2000.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部