摘要
研究下列具有p-Laplace算子的四阶三点边值问题(p(u″(t)))″+a(t)f(u(t))=0,t∈(0,1),u(0)=ξu(1),u′(1)=ηu′(0),(p(u″(0))′=α1(p(u″(δ))′,p(u″(1))=β1(p(u″(δ)),通过利用Avery-Henderson不动点定理,给出了边值问题存在至少两个正解的充分条件.
We study the following fourth-order three-point boundary value problem with p - Laplacian {(φp(u″(t)))″+a(t)f(u(t))=0,t∈(0,1),u(0)=ξu(1),u′(1)=ηu′(0),(φp(u″(0))′=α1(φp(u″(δ))′,φp(u″(1))=β1(φp(u″(δ)),By means of the fixed point theorem due to Avery and Henderson, Some sufficient conditions are obtained that guarantee the existence ofat least two positive solutions to the above boundary value problem.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第24期140-146,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金资助项目(10671012)
教育部博士点专项基金资助项目(20050007011)
关键词
边值问题
锥
不动点定理
正解
boundary value problem
cone
fixed point theorem
positive solution