期刊文献+

交流电弧炉电极智能预测建模及应用 被引量:3

Intelligent Prediction modeling and Its Application on Alternating Current Electric Arc Furnace Electrode
下载PDF
导出
摘要 交流电弧炉电极控制系统是一个多变量、非线性、参数时变、复杂强耦合系统,传统方法很难建立其数学模型。为此从电极控制的实际应用出发,提出了一种变结构遗传Elman网络预测建模方法,其中改进的混合遗传算法用来对网络结构和权值及自反馈增益的同步动态寻优。并将基于BP算法的改进Elman网络和本文提出的变结构遗传Elman网络都应用于交流电弧炉的电极模型建模中。通过基于安钢现场数据的计算机仿真实验表明:变结构遗传Elman网络克服了因复杂对象造成的网络结构复杂问题和采用BP算法带来的权值训练缺陷;具有更好的动态性能,逼近速度快,精度更高等优点。 Electrode control system of alternating current electric arc furnace is a nonlinear, parameter-time-varying, strong coupled system, and traditional method can hardly build up its mathematics model. From the application of electrode control, a variable structure Elman neural network prediction model based on a new hybrid generic algorithm is proposed in this paper for better efficiency. This learning algorithm which can simultaneously evolve the network structure, the weights and self-feedback gain coefficient based on improved hybrid generic algorithm. The improved Elman based on BP algorithm and the variable structure Elman neural network proposed in this paper are both applied in identification of electrode model. The simulation based on the spot real data of Anyang Steel indicates that the variable structure Elman neural network overcomes the problem of complex network structure, which is brought by the complexity of electrode control system and limitation of weights by BP algorithm. The proposed method based on a new hybrid generic algorithm has better dynamic characteristic, quicker approach speed, and better precision.
出处 《电工技术学报》 EI CSCD 北大核心 2007年第12期175-179,共5页 Transactions of China Electrotechnical Society
基金 北京市教育委员会重点学科共建项目(XK100080537)
关键词 电极 混合遗传算法 ELMAN神经网络 变结构 Electrode, hybrid generic algorithm, Elman neural network, variable structure
  • 相关文献

参考文献13

二级参考文献49

  • 1张良杰,毛志宏,李衍达.遗传算法中突变算子的数学分析及改进策略[J].电子科学学刊,1996,18(6):590-595. 被引量:26
  • 2康立山 谢云 等.非线性并行算法--模拟退火算法[M].北京:科学技术出版社,1997..
  • 3张乃尧 阎平凡.神经网络与模糊控制[M].清华大学出版社,1996.78-90.
  • 4吴庆海.热轧宽带钢板形控制模型及策略的研究:学位论文[M].北京:北京科技大学,2001..
  • 5谭真 郭广文.工程合金热处理[M].北京:冶金工业出版社,1994.137.
  • 6邓自立,动态系统分析及其应用,1985年
  • 7高桥昭一,电热,1988年,37期,49页
  • 8Ljung. L. Issue in system identification [J]. IEEE Control Systems Magazine, 1991, 11(1): 25-29.
  • 9Cheng Y C, Qi W M, Cai W Y. Dynamic properties of Elman and modified Elman neural network[C]. Beijing: 2002 International Conference on Machine Learning and Cybernetics, 2002.
  • 10Li Xiang, Chen Guanrong, Chen Zengqian et al. Chaotifying linear Elman networks[J]. IEEE Transactions on Neural Networks 2002,13(5): 1193-1199.

共引文献139

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部