期刊文献+

基于卷积型小波包变换的信号降噪研究 被引量:3

Research on Signal De-noising Method Based on Convolution Type of Wavelet Packet Transformation
下载PDF
导出
摘要 提出了一种基于卷积型小波包变换的多尺度降噪方法。采用卷积型小波包变换,克服了传统小波包变换数据点数随分解尺度的增加而呈指数减小的问题;改进了噪声方差估计方法,较好地保留了信号的主要细节;采用了新的阈值函数,其表达式简单易于计算,同Donoho软阈值函数具有相同的连续性,且克服了软阈值函数中估计小波系数与分解小波系数之间存在着恒定偏差的问题。仿真结果表明,新的降噪方法有效抑制了在信号奇异点附近产生的Pseudo-Gibbs现象,在降噪精度上优于传统的小波包降噪方法。 A multi-scale de-noising algorithm based on the convolution type of wavelet packet transformation was presented. This algorithm overcame shortcomings of the classical wavelet packet transformation, in which the length of sequences obtained always decreased by decomposition scales. The new algorithm improved estimated method of white noise standard deviation at each scale and thus kept the main edges of signal well. A new threshold function has been employed in this algorithm, which was simple in expression and as continuous as the Donoho's soft threshold function, and overcame the shortcoming of an invariable dispersion between the estimated wavelet coefficients and the decomposed wavelet coefficients of the softthreshold method. Simulation results indicated that the new de-noising method suppressed the Pseudo-Gibbs phenomena near the singularities of the signal effectively and achieved better SNR gains than de-noising method based on classical wavelet packet transformation.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2007年第12期160-164,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 浙江省科技计划重点项目(项目编号:2006C21063)
关键词 信号降噪 卷积型小波包变换 阈值函数 噪声估计 Signal de-nosing, Convolution type of wavelet packet transformation, Threshold function, Noise estimation
  • 相关文献

参考文献9

二级参考文献32

  • 1秦前清 杨宗凯.实用小波分析(第一版)[M].西安电子科技大出版科,1995..
  • 2Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding. Signal Processing, 1997, 56(1) : 33-44.
  • 3Figueiredo M, Nowak R. Bayesian wavelet-based signal estimation using non-informative priors. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers. Monterey: 1998. 1368-1373.
  • 4Abramovich F, Sapatinas T, Silverman B. Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society B, 1998, 60(4): 725-749.
  • 5Cohen I, Raz S, Malah D. TransIation-invariant denoising using the minimum description length criterion. Signal Processing, 1999, 75(3) : 201-223.
  • 6Cherkassky V, Shao X. Signal estimation and de-noising using VC-theory. Neural Networks, 2001, 14(1) : 37-52.
  • 7Coifman R, Donoho D. Translation-invariant de-noising. In: Wavelets and Statistics: A Antoniadis, G Oppenheim, Lecture Notes in Statistics. New York: Springer Verlag, 1995. 125-150.
  • 8Bui T D, Chen G. Translation invariant de-noising using multiwavelets. IEEE Transactions on Signal Processing, 1998, 46(12): 3414-3420.
  • 9Mallat S, Zhong. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710-732.
  • 10Laine A, Fan HJ, Schuler S. Digital Mammography. The Netherlands: Elsevier, 1994. 91-100.

共引文献224

同被引文献23

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2LU Hui-juan,ZHANG Huo-ming,MA Long-hua.A new optimization algorithm based on chaos[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(4):539-542. 被引量:19
  • 3修春波,张雨虹,刘玉霞.组合优化问题的混沌搜索策略[J].系统仿真学报,2007,19(5):1026-1029. 被引量:5
  • 4周轶尘 彭勇.发动机缸盖系统振动特性研究[J].内燃机学报,1988,6(1).
  • 5CHERKASSKY V, SHAO X. Signal estimation and de-noising using VC-theory [M]. Neural Networks, 2001.
  • 6张弦,李世平,孙浚清,唐超.一种改进的小波阈值去噪方法[J].微计算机信息,2007,23(31):309-311. 被引量:20
  • 7Vapnik V. The Nature of Statistical Learning Theory[ M ]. 2nd ed. New York : Springer-Verlag,2000.
  • 8Hu Q, He Z J, Zhang Z S, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble [ J ]. Mechanical Systems and Signal Process- ing, 2007,21 ( 2 ) :688 - 705.
  • 9Liu F, Ruan X E. Wavelet-based diffusion approaches for sig- nal denoising [ J ]. Signal Processing, 2007,87 ( 5 ) : 1138 - 1146.
  • 10To A C, Moore J R, Glaser S D. Wavelet denoising tech- niques with applications to experimental geophysical data [J]. Signal Processing,2009,89(2) : 144 - 160.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部