期刊文献+

SVM全极化SAR图像分类中的特征选择 被引量:11

A New Feature Selection Algorithm for SVM-Based Fully Polarimetric SAR Image Classification
下载PDF
导出
摘要 本文将SVM用于全极化SAR图像分类,并提出一种新的应用于SVM分类的特征选择算法。该算法以支持向量个数作为特征评估准则,利用顺序前进法加入特征。基于NASA/JPL实验室AIRSAR系统的L波段荷兰Flevoland全极化数据的与RELIEF-F算法的对比实验表明,在特征个数更少(或相当)的情况下,本文特征选择算法能在更广泛的SVM参数取值范围内获得更高的分类精度。 SVM is used for fully polarimetric SAR image classification,and a novel feature selection algorithm followed by SVM- based classification is proposed in this paper. In the new algorithm, number of support vectors is taken as estimation rule, and sequential forward selection is used. Using L-band fully polarimetric SAR data of Flevoland, Netherlands, acquired by the NASA/JPL AIRSAR sensor, the new feature selection algorithm is compared with RELIEF-F, higher classification accuracy with less or equivalent number of features in a wider range of the SVM parameters is observed from the experiment results.
出处 《信号处理》 CSCD 北大核心 2007年第6期877-881,共5页 Journal of Signal Processing
关键词 极化合成孔径雷达 特征选择 分类 支持向量机 Polarimetrie Synthetic Aperture Radar Feature Selection Classification Support Vector Machine
  • 相关文献

参考文献15

  • 1Van Zyl J J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. on Geoscience and remote sensing, 1989,27 ( 1 ) :36-45.
  • 2Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. on Geoscience and Remote Sensing, 1997,35 (1): 68 -78.
  • 3Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data. IEEE Trans. on Geoscience and remote sensing, 1998,36(3) :963-973.
  • 4Lee J-S, Grunes M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. on Geoscience and Remote Sensing, 1999,37 (5) :2249-2258.
  • 5Fukuda S, Hirosawa H. Support vector machine classification of land cover: application to polarimetric SAR data. IEEE International Geoscience and Remote Sensing Symposium ,2001 : 187-189.
  • 6Vapnik V 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7Vapnik V N 著.许建华,张学工译.统计学习理论.北京:电子工业出版社,2004.
  • 8Fukuda S, Katagiri R, Hirosawa H. Unsupervised approach for polarimetric SAR image classification using support vector machines. IEEE International Geoscience and Remote Sensing Symposium ,2002:2599-2601.
  • 9Anil Jain, Douglas Zongker. Feature selection : evaluation, application, and small sample performance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,19 ( 2 ) : 153-158.
  • 10Huan Liu, Lei Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. on Knowledge and Data Engineering,2005,17 (4) :491-502.

共引文献26

同被引文献97

引证文献11

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部