期刊文献+

基于多级维纳滤波的MUSIC方法 被引量:6

A MUSIC Algorithm Based on Multi-stage Wiener Filter
下载PDF
导出
摘要 多级维纳滤波是一种降维算法,本文提出了一种将多级维纳滤波引入到MUSIC算法的预处理模型,提出了一种构造预处理滤波器的方法,提出了适合于MUSIC方法的多级维纳滤波的结构。本文提出的方法不需要采样数据二阶统计的特征值分解,降低了运算量。本文方法具有一般性,适合于基于子空间方法的一大类DOA估计。仿真结果证明了方法的有效性。 Multi-stage Wiener filter is a reduced-rand algorithm. In this paper, the pretreatment model is presented, thus the multi-stage Wiener filter can be used in MUSIC algorithm. A method to construct the pretreatment filter is brought up. The suitable configuration of multi-stage Wiener filter for MUSIC algorithm is proposed. The new method has less computational cost for the new method need not the eigenvalues decomposition of the sample data autocorrelation. The new method can apply to a lot of subspace methods. Simulation results demonstrate the effectiveness of the method.
出处 《信号处理》 CSCD 北大核心 2007年第6期937-940,共4页 Journal of Signal Processing
基金 国家自然科学基金(60502040)资助
关键词 阵列信号处理 多级维纳滤波 MUSIC Array signal processing Multi-stage Wiener filter MUSIC
  • 相关文献

参考文献8

  • 1Pisarenko, V. F. The retrieval of harmonics from a covariance function. Geophysical Journal Royal of Astronomical Society, 1973,33,347-366.
  • 2R. O. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. AP, Mar. 1986,34 : 276-280.
  • 3R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Trans. ASSP, July 1989,37 (7) :984-995.
  • 4Barabell, A.. Improving the resolution performance of eigenstructure-based directionfinding algorithm. In Proceedings Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 1983, pages 336- 339, Boston, MA.
  • 5Rao, B. D. and Hari, K.. Performance analysis of root-music. IEEE Transactions on Signal Processing, 1989, 37 ( 12), 1939-1949.
  • 6R. Kumaresan, D. W. Tufts, Estimating the angles of arrival of multiple plane waves, IEEE Trans. AES, Jan. 1983,19 (1) :134-139.
  • 7M. Viberg, B. Ottersten, Detection and estimation in sensor arrays using weighed subspace fitting, IEEE Trans. SP, Jan. 1991,39( 1 ) :2463-2449.
  • 8J. Scott Goldstein, Irving S. Reed, Louis L. Scharf. A Multistage Representation of the Wiener Filter Based on Orthogonal Projections. IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998.

同被引文献37

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2李瑶,董瑞,何韬,梁栋.一种基于Contourlet变换的图像去噪方法[J].计算机技术与发展,2007,17(3):81-83. 被引量:5
  • 3Goldstein J S,Reed I S.A new method of wiener filtering and its application o interference mitigation for communications[C] // Proceedings of the 1997 MILCOM.Washington D C:IEEE,1997:1087-1091.
  • 4Goldstein J S,Reed I S,Scharf L L.A multistage representation of the wiener filter based on orthogonal projections[J].IEEE Transactions on Information Theory,1998,44(7):2943-2959.
  • 5Witzgall H E,Goldstein J S.Detection performance of the reduced-rank linear predictor ROCKET[J].IEEE Transactions on Signal Processing,2003,51(7):1731-1738.
  • 6Witzgall H E,Goldstein J S.Rock MUSIC-non-unitary spectral estimation[R].Santiago:SAIC,2000.
  • 7吴建新,王彤,索志勇.一种快速波达方向估计算法[D].西安:西安电子科技大学,2009.
  • 8Zoltowski M D,Joham M,Chowdhury S.Recent advances in reduced-Rank adaptive filtering with application to high-speed wireless communications[C] //Proceedings of the 2001 SPIE.Wuhan:IEEE,2001.1-15.
  • 9Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation[ J ]. IEEE Transations on Antennas and Propagation, 1986,34(3) :276 - 279.
  • 10Witzgall H E, Goldstein J S. Detection performance of the reduced- rank linear predictor ROCKET[ J ]. IEEE Transactions on Signal Processing, 2003,51(7):1731 - 1738.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部