摘要
该文对多生物特征融合中的量化层融合进行了研究,给出了能使识别系统性能提高的最佳权值方案。论文首先提出了一种便于对融合策略进行研究的量化值归一化模型。然后针对3个与生物特征识别性能有关的参数,错误接受率FAR、错误拒绝率FRR和等错率EER,分别进行讨论,推导出使它们降到最小时的权值条件。最后以掌纹特征为例,进行多生物特征融合实验。结果表明了量化层融合能有效提高系统识别性能。
This paper describes an optimal weighting strategy for improving the performance of recognition systems by emphasizing the score level fusion of multimodal biometrics. The system uses a score normalization model which predigests the fusion strategy research. Then, a weighted combination of three parameters (false acceptance rate (FAR), false rejection rate (FRR), equal error rate (EER)) is minimized to give the best recognition result. Tests using palm prints as an example, show the effectiveness of score level fusion for promoting the performance of recognition systems.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第2期192-195,共4页
Journal of Tsinghua University(Science and Technology)