7[7]Ramze R M,Elelieveldt B P F,Reiber J H C.A new cluster validity indexes for the fuzzy c-mean[J].Pattern Recognition Letters,1998,19:237-246.
8[8]Frank Y Shih,Kai Zhang.Support vector machine networks for multi-class classification[J].International Journal of Pattern Recognisition and Artificial Intelligence,2005,6 (1):775-786.
3[4]Vapnik V. Statistical leoing theory[M]. New York:John Wiley & Sons, 1998
4[5]Scholkopf B, Smola A J. Learning with kernels [M].Cambridge,MA: MIT Press, 2002.
5[6]Scholkopf B, Plat J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001,13(7): 1443-1471.
6[7]Joachims T. Transductive inference for text classification using support vectoor machine[A]. In prooceedings of the Sixteenih International Conference on Machine Learning [C]. Morgan Kaufmann, 1999:148-156.
7[10]Yiqiang Zhan, Dinggang Shen. Design efficient support vector machine for fast classification [J]. Pattern Recognition, 2005,38:157-161.
8[11]Zhang X. Using class-center vectors to build support vector machines[A]. InPrroceedingss of NNSP'99[C], 1999.
9[12]Mao K Z. Feature subset selection for support vector machines through discriminative function pruning analysis [J]. Ieee Transaction on Systems, Man, and Ctbernetics Part B: Cybernetics, 2004,34(1):60-67.
10[13]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[A]. Proceedings of the 1997 IEEE Workshop on Nerual Networks for Signal Processing[C]. IEEE, 1997.276-285.