期刊文献+

基于视觉感知的图像增强质量客观评价算法 被引量:25

A new metric for objectively assessing the quality of enhanced images based on human visual perception
下载PDF
导出
摘要 提出了一种新的图像增强质量客观评价算法。算法综合考虑图像局部区域的背景平均亮度和空间复杂度对视觉分辨力的影响,导出了用于判断局部灰度级跃变是否被有效感知的重要参数——临界可见偏差JND(Just Noticeable Difference),并利用此参数分别计算出图像增强前后有效感知像素数的变化情况,从而定量地给出图像增强质量的评价结果。测试结果表明,本文算法的性能优于传统的平均局部方差法,且评价结果与主观评价结果吻合。 A novel objective quality evaluation algorithm for enhanced images is presented. The proposed algorithm comprehensively considers the effects of loeal area average brightness of the baekground and spaee complexity on visual resolution. In order to judge whether the varianee of gray is effeetively pereepted or not,the just notieeable differenee(JND) is derived. The ehanges in the number of pereeptible pixels between the original image and the enhaneed image can be caleulated by use of JND parameter. Thus quantitative results to assess the quality of enhaneed images are obtained. The experimental results demonstrate that the proposed algorithm has better performanee than the conventional average loeal varianees method (ALV) ,and assessment results are consistent with those of the subjective perceptual method.
作者 王湘晖 曾明
出处 《光电子.激光》 EI CAS CSCD 北大核心 2008年第2期258-262,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(10704043) 南开大学科技创新基金资助项目
关键词 图像质量评估 图像增强 视觉感知 临界可见偏差 image quality evaluation image enhancement human visual perception Just Notieeable Differenee
  • 相关文献

参考文献12

  • 1Agaian S S, Silver B, Panetta K A. Transform coefficient histogrambased image enhancement algorithms using contrast entropy[J]. IEEE Transactions on image processing,2007,16(3) :741-758.
  • 2李国友,李惠光,吴惕华,董敏.PCNN和Otsu理论在图像增强中的应用[J].光电子.激光,2005,16(3):358-362. 被引量:14
  • 3Bouzerdourn A,Havstad A,Beghdadi A. Image quality assessment using a neural network approach[A]. Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information[C]. Rome, Italy: 2004,330-333.
  • 4Arici T,Altunbasak Y. Image local constrast enhancement using adaptive non-linear filters[A]. IEEE International Conference on Image Processing[C]. AUanta,GA,USA: 2006,2881-2884.
  • 5Chang D C,Wu W R. Image contrast enhancement based on a histogram transformation of local standard deviation[J]. IEEE Transactions on Medical Imaging, 1998,17(4) :518-531.
  • 6Russo F. An image enhancement technique combining sharpening and noise reduction[J]. IEEE Transactions on Instrumentation and Measurement, 2002,51 (4) :824-828.
  • 7曹圣群,黄普明,鞠德航.HVS模型及其在静止图象压缩质量评价中的应用[J].中国图象图形学报(A辑),2003,8(4):379-386. 被引量:24
  • 8丁绪星,朱日宏,李建欣.一种基于人眼视觉特性的图像质量评价[J].中国图象图形学报(A辑),2004,9(2):190-194. 被引量:57
  • 9Wang Z,Bovik A C,Sheikh H R,et al. Image quality assessment:from error measurement to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(1) :1-14.
  • 10Yang X K,Ling W S, Lu Z K,et al. ,Just noticeable distortion model and its applications in video coding[J]. Signal Processing; Image Communication, 2005,20(7 ) : 662-680.

二级参考文献81

  • 1CCIR. Method for the subjective assessment of the quality of television pictures recommendation 500-3 [A ]. In:Recommendations and Reports of the CCIR[S], International Telecommunication Union,Geneva, 1986.
  • 2Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on Communication, 1995,43(12) : 2959-2965.
  • 3Marmolin H. Subjective MSE measures[J]. IEEE Transactions on Systems, Man and Cybernetics, 1986,16(3) : 486-489.
  • 4Hall C F, Hall E L. A nonlinear model for the spatial characteristics of the human visual system [J].IEEE Transactions Systems Manunication Cybernet, 1977, 7:161-170.
  • 5Crranrath D J. The role of human visual models in image processing[J]. Proceeding of IEEE,1981,69(5) :552-561.
  • 6Daly S. The visible differences predictor: An algorithm for the assessment of image fidelity [A]. In: Proceedings of SHE,Symposium on Model-based Vision[C], Boston, USA, 1992,1616:2-15.
  • 7Lai Yung-kai, Jay Kuo C C. A harr wavelet approach to compressed image quality measurement [ J]. Journal of Visual Communication and Image representation,2000,11(1):17-40.
  • 8Chin F Z C, Xydeas C S. Dual-mode image quality assessment metric [A]. In: IEEE Region 8 International Symposium on Video/Image Processing and Multimedia Communications [C],Zadar, Croatia, 2002,6:137-140.
  • 9Naranjan Damer-venkata, Thomas D. Kitt, Wilsons, et al.Image quality assessment based on a degradation model [J].IEEE Transactions. on Image Proceedings, 2000,9 (4) : 636-650.
  • 10Karunasekera S A, Kingsburg N G. A distortion measure for blocking artifacts in images based on human visual sensitivity[J]. IEEE Transactions on Image Proceesing, 1995,4(6) : 713-724.

共引文献99

同被引文献280

引证文献25

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部