期刊文献+

基于改进K-均值聚类的快速分形图像编码算法 被引量:10

A Fast Fractal Image Compression Using the Improved K-mean Clustering
下载PDF
导出
摘要 将先进的K-均值聚类理论引入到分形图像编码领域,是目前国际学术界的研究热点之一。本文全面分析了K-均值聚类的初始聚类中心选取问题,给出了基于均值-标准差的初始聚类中心选取新方案,并据此提出了一种新的快速分形图像编码算法。仿真实验表明,本文所提出的快速分形图像编码算法是一种高效的图像压缩方法,不仅其压缩效果明显优于传统K-均值聚类分形图像压缩方案,而且具有较短的编码时间。同时,该算法还具有较强的通用性与适应性(传统K-均值分形编码方法对于纹理图像压缩效果较差,而本文算法的压缩效果却较理想)。 How to import the advanced theory of K-mean clustering into the domain of fractal image encoding is a hotspot research in national academia. In this paper, the selection of initial clustering center for K-Means clustering is analyzed, an new initial clustering center selection based on average value and variance is given, and a novel fast fractal image coding method is proposed. Experimental results show that the proposed coding is a fast and efficient image compression scheme; it can considerably shorten the encoding time, while achieving the same or better decoded image quality.
出处 《计算机科学》 CSCD 北大核心 2008年第2期219-222,共4页 Computer Science
基金 辽宁省自然科学基金(20032100) 视觉与听觉信息处理国家重点实验室(北京大学)开放基金(0503) 大连市科技基金(2006J23JH020) “图像处理与图像通信”江苏省重点实验室(南京邮电大学)开放基金(ZK205014) 江苏省计算机信息处理技术重点实验室(苏州大学)开放课题基金(KJS0602)资助
关键词 图像压缩 分形编码 K-均值聚类 初始聚类中心 Image compression, Fractal coding, K-mean clustering, Initial clustering center
  • 相关文献

参考文献9

  • 1Jacquin A E, A novel fractal Block Coding technique for digital image [A], In: Proceedings of ICASSP IEEE International conference on ASSP [C]. Albuquerque, New Mexico, USA, Apr. 1990. 2225-2228.
  • 2Jacquin A E. Fractal image coding: A review [J]. Proceeding of the IEEE, 1993, 81(10): 1451-1465.
  • 3Wohlberg B, Jager G. A review of the fractal image coding literature [J]. IEEE Transactions on Image Processing, 1999, 8(12) : 1716-1729.
  • 4He C, Yang S X, Huang X. Novel progressive decoding method for fractal image compression [J]. IEEE Proceedings-Vision, Image and Signal Processing, 2004,151(3) : 207-213.
  • 5He C, Yang S X, Huang X. Variance-based accelerating scheme for fractal image encoding [J]. IEE Electronics Letters, 2004, 40 (2): 115-116.
  • 6Trieu kien T, Jyh horng J, Reed I S, et al. A fast encoding algorithm for fractal image compression using DCT inner product [J]. IEEE Transactions on Image Processing, 2000, 9(4): 529-535.
  • 7陈作平,叶正麟,赵红星,郑红婵.结合K均值聚类和KD-Tree搜索的快速分形编码方法[J].计算机辅助设计与图形学学报,2006,18(7):965-970. 被引量:6
  • 8姜政,江铭炎.一种基于K-均值聚类优化的快速分形图像压缩算法[J].山东大学学报(工学版),2006,36(3):22-25. 被引量:2
  • 9Pena J, Lozano J, Larranaga P. An empirical comparison of four initialization methods for the K-Means algorithm [J]. Pattern Recognition Letters, 1999, 20(10): 1027-1040.

二级参考文献20

  • 1袁静,冯前进,陈武凡.基于模糊聚类优化的分形图像压缩快速算法[J].计算机应用与软件,2005,22(5):13-15. 被引量:5
  • 2荻原将文,山口亨,古荻隆嗣.马炫译.人工神经网络与模糊信号处理[M].北京:科学出版社,2003.
  • 3BARNSLEY M F, HURD L P. Fractal image compression [M]. Boston: Wellesley Press, 1993.
  • 4JACQUIN A. Image coding based on a fractal theory of iterated contractive image transformations[J]. IEEE Transactions on Image Processing, 1992,1 (1):18-30.
  • 5LEE C K, LEE W K. Fast fractal image block coding based on local variances [J].IEEE Transactions on Image Process,1998, 7(6): 888-891.
  • 6HE C, YANG S X, HUANG X. Variance-based acceleration scheme for fractal image encoding [J]. Electronics Letters,2004,40(2) : 115-116.
  • 7HE C, YANG S X, HUANG X. Fast fractal image compression based on one-norm of normalized block[J]. Electronics Letters, 2004,40(17) : 32-33.
  • 8KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient K-means clustering algorithm: analysis and implementation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7):881-892.
  • 9Saupe D.Fractal image compression via nearest neighbor search[C]//Proceedings of the NATO ASI Conference on Fractal Image Encoding and Analysis,Trondheim,1995:101-125
  • 10Fisher Y.Fractal image compression-theory and application[M].New York:Springer,1994:79-90

共引文献6

同被引文献90

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部