期刊文献+

一种新颖的多传感器行驶车辆分类系统 被引量:8

A Novel Multisensor System for Moving Vehicle Classification
下载PDF
导出
摘要 提出了一种新颖的利用5个埋入式应变传感器获得车型特征参数的多传感器行驶车辆分类系统.该系统利用传感器的特殊位置分布与车辆各轴到达传感器时刻的相关性,对采集的信息进行像素级融合,突出信号的特征部分,提高特征提取的准确率和精度.最后利用D-S证据理论组合轴数、轴空间和轴重等特征证据对车型进行分类.实验结果表明该系统对行驶车辆识别率超过95%. A novel multisensor system for moving vehicle classification using the vehicle feature parameters gained by five embedded concrete strain gages was put forward. First, the collected information was pixel-fused according to the pertinence between the special locations of the sensors and arrival time of the vehicles' axles. Thus the feature sections were reinforced, and the exactness and the accuracy of feature extraction were increased. The feature evidences of axle number, axle space and axle weight of the vehicles were then combined by the combination rule of D-S evidence theory, according to which, the vehicle types were classified finally. The result shows that over 95 % recognition rate of moving vehicle were gained using the proposed system.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2008年第2期194-198,共5页 Journal of Tianjin University(Science and Technology)
基金 黑龙江省交通厅基金资助项目(HJZ-2004-12)
关键词 车辆分类 多传感器系统 融合算法 INS组合规则 vehicle classification multisensor system fusion algorithm D-S combination rule
  • 相关文献

参考文献9

  • 1荣建,刘小明,任福田,邢惠臣.基于高速公路通行能力分析的车辆分类研究[J].中国公路学报,1999,12(3):82-89. 被引量:13
  • 2谢宇,康景利,董巍,全国庆.智能交通系统中车型分类的模糊模式识别方法[J].北京理工大学学报,1999,19(2):171-175. 被引量:15
  • 3胡方明,简琴,张秀君.基于BP神经网络的车型分类器[J].西安电子科技大学学报,2005,32(3):439-442. 被引量:22
  • 4Ha D M, Lee J M, Kim Y D. Neural-edge-based vehicle detection and traffic parameter extraction [ J]. Image and Vision Computing, 2004,22(11) : 899-907.
  • 5郑建霞.红外线编码扫描式智能车辆分类计数器[J].长安大学学报(自然科学版),2003,23(3):85-87. 被引量:5
  • 6Dempster A P. Upper and lower probabilities induced by a multivalue mapping [ J ]. Annals of Mathematical Statistic, 1967, 38: 325-339.
  • 7Dempster A P. A generalization of Bayesian inference [ J ]. Journal of Royal Statistical Society(B), 1968, 30: 205-247.
  • 8Ahmed Al-Ani, Mohamed Deriche. A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence [ J ]. Journal of Artificial Intelligence Research, 2002,17: 333-361.
  • 9Nikolaidis Dimitrios Romanos. Real-Time Speed, Classification and Weigh-in-Motion Using a Single, Spatially Distributed FiberOptic Sensor [ D ]. Florida: Florida Institute of Technology, 2003.

二级参考文献14

  • 1黄敬雄,谢维信,黄建军,李天泉.基于模糊神经网络的目标识别[J].西安电子科技大学学报,1997,24(1):72-77. 被引量:5
  • 2郭桂蓉 谢维信.模糊模式识别[M].长沙:国防科技大学出版社,1993..
  • 3于濂.模糊模式识别和模糊图像处理及二次推理理论的研究及应用:学位论文[M].北京:北京师范大学数学系,1997..
  • 4于濂,模糊模式识别和模糊图象处理及二次推理理论的研究及应用,1997年
  • 5郭桂蓉,模糊模式识别,1993年
  • 6徐吉谦,交通工程总论,1991年,72页
  • 7JT J001 97 公路工程技术标准
  • 8Brandon J R, Howarth M S, Searcy S W. A Neural Networks of Carrot Tip Classification[J]. ASAE Paper, 1990, 90(7): 549.
  • 9Abou-Nasr M A, Sid-Ahmed M A. Fast Learning and Efficient Memory Utilizition with a Prototype Based Neuron-Classifier[J]. Pattern Recognition, 1995, 79(28): 581-593.
  • 10杜干,孙肖子.医学图像分割的神经网络方法[J].西安电子科技大学学报,1998,25(5):602-605. 被引量:8

共引文献51

同被引文献64

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部