期刊文献+

半光滑方程的牛顿型分解算法及其在最优潮流中的应用 被引量:2

Newton-Type decomposition methods for semismooth equations with application to OPF problems
下载PDF
导出
摘要 对具有弱耦合特性的非线性半光滑方程组提出了牛顿型分解算法,理论上证明了新算法的收敛性.新算法享有分解法节省计算量的优点,且推广了光滑方程于半光滑方程系统.根据电力系统有功与电压、无功和相角固有的弱耦合性质,运用新算法于电力系统的最优潮流(Optimal Power Flow-OPF)的求解,计算结果显示了算法的有效性. Newton-type decomposition methods for solving semismooth nonlinear equations with the weak-coupling property are proposed.The theoretical convergence of new algorithms is estabilished.The new methods have the computing advantage of saving cost and extend decomposition methods of smooth equations to semismooth ones.Based on the inherent weak-coupling property between the real power and voltages,the reactive power and angles,the global decomposition method proposed to solve the optimal power flow(OPF) problem is used in this paper.Numerical results show the effect of the algorithm.
出处 《长沙理工大学学报(自然科学版)》 CAS 2007年第4期43-48,共6页 Journal of Changsha University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(60474070) 湖南省科技厅科研资助项目(S2006F223) 湖南省教育厅重点科研项目(07A001)
关键词 半光滑方程 牛顿法 分解算法 最优潮流 semismooth equation Newton method decomposition method optimal power flow
  • 相关文献

参考文献1

二级参考文献12

  • 1[2]Wang X,Song Y H,Lu Q.A coordinated real-time optimal dispatch method for unbundled electricity markets[J].IEEE Trans on Power Systems.2002,17 (2):482-490
  • 2[4]Sun D I,Ashley B,Brewer B,et al.Optimal power flow by Newton approach [J].IEEE Trans On PAS,1984,103 (10):2864-2880.
  • 3[5]Maria G A,Findlay J A.A Newton optimal power flow program for Ontario hydro EMS [J].IEEE Trans on Power Systems,1987,2 (3):576-584.
  • 4[6]Chang S K,Marks G E,Kato K.Optimal real-time voltage control [J].IEEE Trans on Power Systems,1990,5 (3):750-758.
  • 5[8]Torres G L,Quintana V H,Optimal power flow by a nonlinear complementarity method [J].IEEE Trans on Power Systems,2000,15 (3):1028-1033.
  • 6[9]Conejo A J,Nogales F J,Frieto F J.A decomposition procedure based on approximate Newton direction [J].Math.Program.2002,93:495-515.
  • 7[10]Harker P T,Pang J S.Finite-dimensional variational inequality and noniinear complementarity problems:Asurvey of theory,algorithms and applications [J].Mathematical Programming,1990,48:161-220.
  • 8[11]Fisher A.An NCP-function and its use for the solution of complementarity problems [C].in:Du D.Z.,Qi L and Wormersley R.S.,eds,Recent Advances in Nonsmooth Optimization (World Scientific,Singapore,1995:88-105.
  • 9[12]Facchinei F,Pang J S.Finite-dimensional variational inequalities and complementarity problems [M].New York,Berlin,Springer,2003.
  • 10[13]Ortega J M,Rheinboldt W C.Iterative solution of nonlinear equations in several variables [M].New York:Academic Press,1970.

共引文献34

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部