期刊文献+

基于进化策略方法求任意函数的数值积分 被引量:22

Solving Numerical Integration Based on Evolution Strategy Method
下载PDF
导出
摘要 提出了两种基于进化策略求任意函数数值积分的新方法,其中方法一是基于混合基函数进化策略的数值积分算法;方法二是基于不等距点分割的进化策略数值积分算法.两种算法都采用适用于高维优化问题的单基因突变进化策略,使得该算法不但能计算通常意义下任意函数的定积分,而且能计算奇异函数积分和振荡函数积分.最后给出几个数值积分算例,并与传统数值积分方法作了比较,仿真结果分析表明,两种算法十分有效,能够快速有效地获得任意函数的数值积分值. In this paper, two new kinds of calculating numerical integration methods based on evolution strategy algorithm are proposed. One of which is based on mixing basis function evolution strategies for solving numerical integration, and the other is based on inequality point's segmentation for solving numerical integration. Both of these two algorithms adopt single-gene mutation evolution strategies that suit for high dimensional optimization, which can not only compute usual definite integral for any functions, but also compute singular integral and oscillatory integral. Finally, several experimental results show that the two proposed numerical integration methods are more efficient and feasible in computing the arbitrary functions numerical integration compared with traditional numerical integration methods.
出处 《计算机学报》 EI CSCD 北大核心 2008年第2期196-206,共11页 Chinese Journal of Computers
基金 国家自然科学基金(60461001) 广西自然科学基金项目(0542048)资助
关键词 混合基函数 不等距点分割 适应度 进化策略 单基因突变 数值积分 hybrid basis functions inequality point's segmentation fitness evolution strategies single-gene mutation numerical integration
  • 相关文献

参考文献20

  • 1薛密.数值数学和计算[M].上海:复旦大学出版社,1991.16-69.
  • 2刘玉琏 傅沛仁.数学分析讲义[M].北京:高等教育出版社,1992.256-257.
  • 3Schwefel H P, Back T. Evolution strategies Ⅰ: Variants and their computational implementation//Winter G ed. Proceedings of the Genetic Algorithms in Engineering and Computer Science. Wiley, 1995:111-126
  • 4Schwefel H P, Back T. Evolution strategies Ⅱ: Theoretical aspects//Winter G. Proceedings of the Genetic Algorithms in Engineering and Computer Science. Wiley, 1995:127-140
  • 5云庆夏.进化算法.北京:北京冶金工业出版社,1997
  • 6Yao Xin, Liu Yong. Fast evolution strategies//Angeline P J ed. Proceedings of the 6th Annual Conference on Evolutionary Programming. Berlin: Springer-Verlag, 1997:151-161
  • 7Kappler C. A evolutionary algorithms improved by large mutation//Voigt H M, Ebeling W, Rochenberg Iet al. Proceedings of the Parallel Problem Solving from Nature (PPSN) Ⅳ. Lecture Notes in Computer Science 1141. Berlin, Germany: Springer-Verlag, 1996:346-355
  • 8林丹,李敏强,寇纪凇.进化规划和进化策略中变异算子的若干研究[J].天津大学学报(自然科学与工程技术版),2000,33(5):627-630. 被引量:24
  • 9Gunter R. Local convergence rates of simple evolutionary algorithms with Cauchy mutations. IEEE Transactions on Evolutionary Computation, 1997, 4(1): 249-258
  • 10Chang Ming, Kazuhiro O, Kanji U. Some experimental observations of (μ,λ) evolution strategies//Proceedings of the 2001 Congress on Evolutionary Computation. Seoul: Coex Center, 2001, 1:663-670

二级参考文献23

  • 1彭宏,杨立洪,郑咸义,雷秀仁.计算工程优化问题的进化策略[J].华南理工大学学报(自然科学版),1997,25(12):17-21. 被引量:13
  • 2孙增圻 张再兴 等.智能控制理论与技术[M].北京:清华大学出版社,1991..
  • 3Oppenheim A V Willsky A S Hamid Nawab W S著 刘树棠译.信号与系统(第二版)[M].西安:西安交通大学出版社,1998.71-72.
  • 4王能超.数值分析简明教程[M].北京:高等教育出版社,1997.66-96.
  • 5YAO Xin,LIU Yong.Fast evolution strategies [C]//Proc of the 4th IEEE Conf in Evolutionary Programming.ANGELINE P J,REYNOLDS R,MCDONN J,et al.Berlin,Germany:Springer-Verlag,1997:151-161.
  • 6KAPPLER C.Are evolutionary algorithms improved by large mutation [C]// Lecture Notes in Computer Science:Parallel Problem Solving from Nature (PPSN) Ⅳ.VOIGT H M,EBELING W,ROCHENBERG I,et al.Berlin,Germany:Springer-Verlag,1996,1141:346-355.
  • 7GUNTER R.Local convergence rates of simple evolutionary algorithms with Cauchy mutations [J].IEEE Trans on Evolutionary Computation,1997,4(1):249-258.
  • 8CHANG Ming,KAZUHIRO O,KANJI U.Some experimental observations of (μ,μ,λ)-evolution strategies [C]// Proceedings of the 2001 Congress on Evolutionary Computation.Seoul:COEX Center,2001,1:663-670.
  • 9BACK T,SCHWEFEL H P.Evolution Computation:An Overview [C]//Proc 3rd IEEE Conf on Evolution Computation 1996.Piscataway,NU:IEEE Press,1996:20-29.
  • 10LEUNG Yiuwing,WANG Yuping.An orthogonal genetic algorithm with quanitization for global numerical optimization [J].IEEE Trans on Evolutionary Computation,2001,1 (5):41-53.

共引文献109

同被引文献137

引证文献22

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部