期刊文献+

摄像机自由运动环境下的背景建模 被引量:6

Background Modeling under Free Moving Camera Environment
下载PDF
导出
摘要 提出了在摄像机运动情况下使用多层Homography匹配算法进行背景建模的方法。该方法中,场景可以被看作由多个平面所组成,使用RANSAC方法找到场景中不同的平面,即多层Homography。每个像素点肯定在某个平面上,通过所属平面相应的Homography变换,就能使相邻两帧重叠视野中的像素点进行匹配,这样就能对场景进行背景建模。实验结果表明,该方法能有效地在摄像机运动环境中进行像素点级别的背景建模。 In this paper a novel Multi-layer Homography algorithm for background modeling under free moving camera environment is proposed. Background is composed of many planes. RANSAC is used to find these different planes, called Multi- Layer Hmnography. Each pixel definitely belongs to certain plane. Transformed by the corresponding Homography, each pixel in each frame can find its match in the subsequent frame if it occurs in the shared view of these two frames. Thus, background model can be built. Experiment shows it is effective for background modeling under free moving camera environments.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第2期359-364,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60673189 60433030)
关键词 HOMOGRAPHY 背景建模 对应点 Homography, background modeling, correspondences
  • 相关文献

参考文献10

  • 1Cristani M, Bicegi M, Murino V. Integrated region-and pixel-based approach to background modeling [ A ]. In: Proceedings of IEEE Workshop on Motion and Video Computing [ C ] , Orlando, Florida, USA, 2002:3-8.
  • 2Stauffer C, Grimson W. Learning patterns of activity using real-time tracking [ J ]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 747-757.
  • 3Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach[ A ]. In : Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence [ C ], Providence, Rhode Island, USA, 1997:175-181.
  • 4Mittal A, Paragios N. Motion-based background subtraction using adaptive kernel density estimation[ A]. In: Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition[ C ], Washington, DC, USA, 2004, 2: 302-309.
  • 5Tian Ying-li, Lu Max, Hampapur A. Robust and efficient foreground analysis for real-time video surveillance [ A ]. In: Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition[C], San Diego, CA, USA, 2005, 1: 1182-1187.
  • 6Rao N I, Di Hui-jun, Xu Guang-you. Joint correspondence and background modeling based on tree dynamic programming [ A ]. In: Proceedings of International Conference on Pattern Recognition [ C ], Hongkong, China, 2006, 2:425-428.
  • 7Harris C, Stephens M J. A combined comer and edge detector[ A ]. In: Proceedings of Alvey Vision Conference [ C ], Plessey, UK, 1988 : 147-152.
  • 8Schmid C, Mohr R, Bauckhage C. Evaluation of interest point detectors[ J ]. International Journal of Computer Vision, 2000, 37(2) : 151-172.
  • 9Forsyth D A, Ponce J. Computer Vision-A Modern Approach [ M ]. Englewood Cliffs, NJ, USA : Prentice Hall, 2003 : 238-299, 377-430.
  • 10Hartley R, Zisserman A. Multiple View Geometry in Computer Vision [ M ]. UK : Cambridge University Press, 2000 : 320-344.

同被引文献96

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部