期刊文献+

应用数字图像分析技术进行棉花氮素营养诊断的研究 被引量:42

Diagnosis of cotton N status using digital image analysis technique
下载PDF
导出
摘要 本文利用图像分析技术并结合常规观测手段,研究应用图像分析技术诊断棉花氮素营养状况的可行性及获取的光谱参数与表征棉花氮素营养状况的生物学参数之间的关系。结果表明:棉花在不同时期特征光谱参数与棉花含氮量及叶片含氮量呈显著相关,其中盛蕾期棉花全氮含量与光谱参数的相关性最好,在盛花期棉花叶片含氮量与光谱参数的相关系数最高,G/(G+R+B)可作为氮素营养诊断的指标。在棉花全生育期内,地面覆盖度与棉花叶面积指数、生物量及吸氮量呈显著相关,在出苗至盛花期之间达极显著相关。经检验,地面覆盖度可很好地预测棉花的叶面积指数、生物量及吸氮量,相对误差分别为26.2%、3.46%和3.37%。 This paper is an investigation of the possibility of N nutrition diagnosis in cotton plant, using digital image analysis of digital camera shots, and researches into the relationships between spectral and biology parameters, which could denote cotton N status. The results show a significant linear correlation between feature spectral parameters and total N concentration in cotton plant. The same holds true for the relationship of cotton leaf N concentration. The best relationship between spectral parameters and total N concentration occurs during full-budding stage. However, at full-flowering stage, regression coefficient between spectral parameters and cotton leaf N concentration is the best. G/( G + R + B) parameter can be considered an important indictor of N status diagnosis. Results of the experiment show that ground-canopy coverage percent and LAI,biomass and accumulation of absorbed N, significantly correlate for the entire cotton growth stage. From sprouting to full-flowering, the correlation hits a high level of significance(P 〈 0.01 ). At last the test results indicate that ground-canopy coverage percent has a better estimation precision for LAI, biomass and accumulated absorbed N, and with a relative error percent of 26.2% ,3.46% and 3.37% ,respectively.
出处 《中国生态农业学报》 CAS CSCD 2008年第1期145-149,共5页 Chinese Journal of Eco-Agriculture
基金 国家自然科学基金项目(30560069) 农业部“948”重大专项(2003-Z53)资助
关键词 数字图像分析技术 棉花 氮素 营养诊断 地面覆盖度 叶面积指数 生物量 吸氮量 Digital image analysis technique, Cotton, N element, Nutrition diagnosis,Percent of ground-canopy coverage, Leaf area index,Biomass,Accumulated absorbed N
  • 相关文献

参考文献7

  • 1Blackmer T. M. Schepers J. S. Techniques for monitoring crop nitrogen status in corn[ J]. Commun. Soil Sci. Plant Anal. 1994,25 : 1791-1800.
  • 2Adamsen F. J. Paul J. P.Barnes Jr. E. M. et al. Measuring wheat senescence with a digital camera[ J]. Crop Sci. 1999,39:719 - 724.
  • 3Lukina E. Stone M. ,Raun W. Estimating vegetation coverage in wheat using digital images [ J ]. Plant Nutri. 1999, 22(2) :341-350.
  • 4Adamsen F. J. Coffelt T. A. Nelson M.et al. Method for using images from a color digital camera to estimate flower number [ J ]. Crop Sci. 2000,40 : 704 - 709.
  • 5Larry C. Purcell. Soybean canopy coverage and light interception measurements using digital imagery[ J]. Crop Sci. 2000,40:834- 837.
  • 6Klassen S. P. Ritchie G. Frantz J. M. et al. Real-time imaging of ground cover: Relationships with radiation capture,canopy photosynthesis, and daily growth rate [ C ] /// Van Toai T. Major D. McDonald M. et al. Digital Imaging and Spectral Techniques:Applications to Precision Agric ulture and Crop Physiology. Madison, WI:American Society of Agronomy .2001.
  • 7雷咏雯,王娟,郭金强,危常州.一种基于图像分析提取作物冠层生物学参数的方法与验证[J].西北农业学报,2006,15(3):45-49. 被引量:11

二级参考文献10

  • 1李存军,王纪华,刘良云,王人潮.基于数字照片特征的小麦覆盖度自动提取研究[J].浙江大学学报(农业与生命科学版),2004,30(6):650-656. 被引量:53
  • 2Moges S M, Raun W R, Mullen R W, et al. Evaluation of green,red, and near Infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield[J].J. plant nutri,2004,27(8):1431-1441.
  • 3Stenberg B, hensen L S, Nordkvist E, et al. Near infrared reflectance spectroscopy for quantification of crop residue, green manure and catch crop C and N fractions governing decomposition dynamics in soil[J]. J. Near Infrared Spectrosc, 2004 (12) : 331 - 346.
  • 4Adamsen F J. Pinter P J, Barnes J E M., et al.Measuring wheat senescence with a digital camera [J]. Crop Sci.,19990 (39):719-724.
  • 5Dowell F E. Automated Color Classification of Single Wheat Kernels Using Visible and Near-Infrared Reflectance[J]. Cereal Chemistry, 1998, 75(1): 142-144,
  • 6Ewing R P, Horton R. Quantitative Color Image Analysis of Agronomic Images [J].Agron.J.,1999 (91):148-153.
  • 7Gerard B, Buerkert A. Aerial photography to determine fertiliser effects on pearl millet and Guiera senegalensis growth[J]. Plant and Soil, 1999 (210): 167-177.
  • 8Li H, Lascano R J, Barnes E M, et al. Multispectral reflectance of cotton related to plant growth, soll water and texture, and site elevation[J]. Agron. J. ,2001 (93) : 1327-1337.
  • 9Lukina E, Stone M, Raun W. Estimating vegetation coverage in wheat using digital images[J]. J. Plant Nutri, 1999,22(2):341-350.
  • 10McMurtrey J E, Chappelle E W, Kim M S,et al. Distinguishing nitrogen fertilization levels in field corn (Zea mays L. ) with actively induced fluorescence and passive reflectance measurements[J]. Remote Sens. Environ. , 1994(47):36-44.

共引文献10

同被引文献520

引证文献42

二级引证文献336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部