期刊文献+

船板钢E_(36)轧后控冷工艺的制定 被引量:5

Design of controlled cooling technology after rolling of ship plate steel E36
下载PDF
导出
摘要 采用Formaster-Digital全自动相变仪测定了船板钢E36加热时的实际相变温度Ac1和Ac3,以及冷却时的实际相变温度Ar1和Ar3,同时测定了试样在不同冷却速度下的相变点,根据相变点绘制出了E36钢的奥氏体连续冷却转变曲线(CCT曲线)。通过分析不同冷却速度对E36钢的显微组织、晶粒度和硬度的影响,制定出了较合理的E36钢轧后控冷工艺:冷却速度5-10℃·s^-1,终冷温度550℃左右,然后空冷。该控冷工艺,保证了室温主要组织为F+P,细化了铁素体(F)晶粒,同时保证了E36钢的硬度要求。 By means of fully automatic phase transformation tester (Formaster-Digital), the actual phase trans/orrriation temperature when heating, i.e. , Ac1 and Ac3, and the actual phase transformation temperature when cooling, i. e. , An and At3, of ship plate steel E3G and phase transformation point of specimen at different cooling rate were measured. Based on phase transformation point, the continuous cooling transformation (CCT) curves of E36 were given. To analyze the effects of different cooling rate on microstructure, grain size and hardness of ship plate steel E36, more reasonable controlled cooling technology after rolling were established including cooling rate at 5-10 ℃ · s^-1 , finish-cooling temperature at about 550 ℃, and then air cooling. The controlled cooling technology not only ensures that the main organization is F+P at room temperature, but also refines the ferrite grain (F), meanwhile ensures the hardnessof ship plate steel E36
作者 王涛 闫洪
出处 《锻压技术》 CAS CSCD 北大核心 2008年第1期47-49,共3页 Forging & Stamping Technology
基金 国家自然科学基金(50765005) 江西省自然科学基金(2007GZC1826) 江西省教育厅资助项目
关键词 控冷 船板钢 显微组织 晶粒度 controlled cooling ship plate steel microstructure grain size
  • 相关文献

参考文献5

二级参考文献2

共引文献38

同被引文献44

  • 1徐党委,苏晓峰,夏志升,陈波.高强船板AH36/DH36的成分优化[J].特钢技术,2009,15(3):22-24. 被引量:3
  • 2刘阳春,徐彬,武军宽,李飞,金永春,阳代军,朱国森.首钢船板钢热轧板卷的生产和使用[J].钢铁研究学报,2011,23(S1):58-66. 被引量:3
  • 3肖国华,肖寄光,王福明,李长荣.含钒高强度船体结构钢的连续冷却转变[J].北京科技大学学报,2006,28(9):830-834. 被引量:5
  • 4邱春林,王建刚,高秀华,宋振官,齐克敏,孙卫华,孙浩.EH36高强度船板钢奥氏体连续冷却的转变行为[J].机械工程材料,2006,30(12):76-79. 被引量:4
  • 5Militzer M, Pandi R, Hawbolt E B. Ferrite nucleation and growth during continuous cooling. MetaU Mater Trans A, 1996, 27(6) : 1547.
  • 6Trzaska J, Dobrzanski L A. Modelling of CCT diagrams for engineering and constructional steels. J Mater Process Technol, 2007, 192/193 : 504.
  • 7Lee J K. Prediction of γ-α transformation during continuous cooling of steel// 41st Metal Working Special Processing Conference Proceeding. Chicago, 1999 : 975.
  • 8ttawbolt E B, Chau B, Brimacombe J K. Kinetics of austenite-ferrite and austenite-pearlite transformations in a 1025 carbon steel Metall Mater Trans A, 1985, 16(4):565.
  • 9Kumar A, McCulloch C, Hawboh E B, et al. Modelling thermal and microstructural evolution on runout table of hot strip mill. Mater Sci Technol, 1991, 7(4) : 360.
  • 10Militzer R P, Hawboh E B, Meadowcroft T R, Modelling the phase transformation kinetics in low-carbon steels J// Hot Work- ability of Steels and Light Alloys--Composites. Montreal, 1996 : 373.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部