期刊文献+

HORIZONTAL LAPLACE OPERATOR IN REAL FINSLER VECTOR BUNDLES 被引量:2

HORIZONTAL LAPLACE OPERATOR IN REAL FINSLER VECTOR BUNDLES
下载PDF
导出
摘要 A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π^*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles. An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and ho harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E. A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π^*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles. An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and ho harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2008年第1期128-140,共13页 数学物理学报(B辑英文版)
基金 supported by Tian Yuan Foundation of China (10526033) China Postdoctoral Science Foundation (2005038639) the Natural Science Foundation of China (10601040,10571144).
关键词 h-Laplace operator h-harmonic Finsler vector bundle h-Laplace operator, h-harmonic, Finsler vector bundle
  • 相关文献

参考文献10

  • 1Aikou T.Differential geometry of Finsler vector bundles[].Rep Fac Sci Kagoshima Univ(MathPhys & Chem).1992
  • 2Wu H.The Bochner technique in differential geometry[].Advance in Mathematics (Chinese).1981
  • 3Miron R.Techniques of Finsler geometry in the theory of vector bundles[].Acta Scientiarum Mathematicarum.1985
  • 4Abate M,Patrizio G.Finsler Metrics—A Global Approach with Applications to Geometric Function Theory[].Lecture Notes in Mathematics.1994
  • 5Bao D,Chern S S,Shen Z.An introduction to Riemann-Finsler geometry[]..2000
  • 6Anastasiei M,Kawaguchi H.Absolute energy of a Finsler space[]..1993
  • 7Sasaki S.On the differential geometry of tangent bundle of Riemannian manifolds[].Thoku Math J.1958
  • 8Ichijy Y,Lee I-Y,Park H-S.On generalized Finsler structures with a vanishing hv-torsion[].J Korean Maht Soc.2004
  • 9Bao D,Lackey B.A geometric inequality and a Weitzenbck formula for Finsler surfaces[].The Theory of Finslerian Laplacians and ApplicationsMAIA.1998
  • 10De Rham G.Variét Différentielles[]..1955

同被引文献5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部